• Title/Summary/Keyword: Hybrid electrical vehicle

Search Result 217, Processing Time 0.024 seconds

Relative Cost Modeling for Main Component Systems fo Parallel Hybrid Electric Vehicle (병렬 하이브리드 전기자동차의 주요 구성시스템에 대한 상대적 가격 모델링)

  • Kim, Pill-Soo;Kim,Yong
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.6
    • /
    • pp.294-300
    • /
    • 1999
  • There is a growing interest in hybrid electric vehicles due to environmental concerns. Recent efforts are directed toward developing an improved main component systems for the hybrid electric vehicle applications. Soon after the introduction of electric starter for internal combustion engine early this century, despite being energy efficient and nonpolluting, electric vehicle lost the battle completly to internal combustion engine due to its limited range and inferior performance. Hybrid Electric vehicles offer the most promising solutions to reduce the emission of vehicles. This paper describes a method for cost reduction estimation of parallel hybrid electric vehicle. We used a cost reduction structure that consisted of five major subsystems (three-type and two-type motor) for parallel hybrid electric vehicle. Especially, we estimated the potential for cost reductions in parallel hybrid electric vehicle as a function of time using the learning curve. Also, we estimated the potentials of cost by depreciation.

  • PDF

Performance Evaluation for Application of Large Capacity LPB Pack Equipped to Series Hybrid Articulated Vehicle (직렬형 하이브리드 굴절차량용 대용량 LPB 팩의 적용 및 성능 평가)

  • Lee, Kang-Won;Mok, Jai-Kyun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.11
    • /
    • pp.930-937
    • /
    • 2012
  • Newly developed Series hybrid low-floor articulated vehicle which can meet both road and railway running conditions. It has the rated driving speed of 80 km/h and three driving modes with hybrid(engine+battery) driving mode, engine driving mode, battery driving mode. The battery driving mode requires the several 10 km running without additional charging operation. The vehicle has been equipped with LPB (lithium polymer battery) pack for the series hybrid propulsion system. LPB pack consists of 168 cells (3.7 V in a cell, 80 Ah) in series, DC Circuit breaker, mechanical rack, BMS (battery management system). This paper has shown the design process of LPB pack and application to the vehicle. Driving results in the road was successful to be satisfied with the requirement of the series hybrid vehicle.

A Study on Optimal Operation Strategy for Mild Hybrid Electric Vehicle Based on Hybrid Energy Storage System

  • Bae, SunHo;Park, Jung-Wook
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.631-636
    • /
    • 2018
  • This paper proposed an optimal operation strategy for a hybrid energy storage system (HESS) with a lithium-ion battery and lead-acid battery for mild hybrid electric vehicles (mild HEVs). The proposed mild HEV system is targeted to mount the electric motor and the battery to a conventional internal combustion engine vehicle. Because the proposed mild HEV includes the motor and energy storage device of small capacity, the system focuses on low system cost and small size. To overcome these limitations, it is necessary to use a lead acid battery which is used for a vehicle. Thus, it is possible to use more energy using HESS with a lithium battery and a lead storage battery. The HESS, which combines the lithium-ion battery and the secondary battery in parallel, can achieve better performance by using the two types of energy storage systems with different characteristics. However, the system requires an operation strategy because accurate and selective control of the batteries for each situation is necessary. In this paper, an optimal operation strategy is proposed considering characteristics of each energy storage system, state-of-charge (SOC), bidirectional converters, the desired output power, and driving conditions in the mild HEV system. The performance of the proposed system is evaluated through several case studies with respect to energy capacity, SOC, battery characteristic, and system efficiency.

Development of a Unified Research Platform for Plug-In Hybrid Electrical Vehicle Integration Analysis Utilizing the Power Hardware-in-the-Loop Concept

  • Edrington, Chris S.;Vodyakho, Oleg;Hacker, Brian A.
    • Journal of Power Electronics
    • /
    • v.11 no.4
    • /
    • pp.471-478
    • /
    • 2011
  • This paper addresses the establishment of a kVA-range plug-in hybrid electrical vehicle (PHEV) integration test platform and associated issues. Advancements in battery and power electronic technology, hybrid vehicles are becoming increasingly dependent on the electrical energy provided by the batteries. Minimal or no support by the internal combustion engine may result in the vehicle being occasionally unable to recharge the batteries during highly dynamic driving that occurs in urban areas. The inability to sustain its own energy source creates a situation where the vehicle must connect to the electrical grid in order to recharge its batteries. The effects of a large penetration of electric vehicles connected into the grid are still relatively unknown. This paper presents a novel methodology that will be utilized to study the effects of PHEV charging at the sub-transmission level. The proposed test platform utilizes the power hardware-in-the-loop (PHIL) concept in conjunction with high-fidelity PHEV energy system simulation models. The battery, in particular, is simulated utilizing a real-time digital simulator ($RTDS^{TM}$) which generates appropriate control commands to a power electronics-based voltage amplifier that interfaces via a LC-LC-type filter to a power grid. In addition, the PHEV impact is evaluated via another power electronic converter controlled through $dSPACE^{TM}$, a rapid control systems prototyping software.

PSiM Based Dynamic Analysis of Input Split Type Hybrid Electric Vehicle (PSiM기반의 입력분기방식 하이브리드 자동차의 모드 변환에 따른 동특성 해석)

  • Bae, Tae-Suk;Choi, Jae-Ho;Lim, Deok-Young
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.4
    • /
    • pp.359-367
    • /
    • 2012
  • In this paper, the input split type series-parallel hybrid electric vehicle (SPHEV) is established and the interpretation of the dynamic characteristics in four kinds of HEV modes, such as electric vehicle mode, engine mode, hybrid mode, and regeneration mode, is described. For this research, the forward-facing approach simulation method is chosen, which is useful for vehicle dynamic analysis. The rating of each powertrain component is designed based on energy-based concept and electrical peaking hybrid (ELPH) method. Finally, the designed powertrain is evaluated with the developed PSiM simulator and simulation results are shown.

Design and Implementation of Modified Current Source Based Hybrid DC - DC Converters for Electric Vehicle Applications

  • Selvaganapathi, S.;Senthilkumar, A.
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.2
    • /
    • pp.57-68
    • /
    • 2016
  • In this study, we present the modern hybrid system based power generation for electric vehicle applications. We describe the hybrid structure of modified current source based DC - DC converters used to extract the maximum power from Photovoltaic (PV) and Fuel Cell system. Due to reduced dc-link capacitor requirement and higher reliability, the current source inverters (CSI) better compared to the voltage source based inverter. The novel control strategy includes Distributed Maximum Power Point Tracking (DMPPT) for photovoltaic (PV) and fuel cell power generation system. The proposed DC - DC converters have been analyzed in both buck and boost mode of operation under duty cycle 0.5>d, 0.5<d<1 and 0.5<d for capable electric vehicle applications. The proposed topology benefits include one common DC-AC inverter that interposes the generated power to supply the charge for the sharing of load in a system of hybrid supply with photovoltaic panels and fuel cell PEM. An improved control of Direct Torque and Flux Control (DTFC) based induction motor fed by current source converters for electric vehicle.In order to achieve better performance in terms of speed, power and miles per gallon for the expert, to accepting high regenerative braking current as well as persistent high dynamics driving performance is required. A simulation model for the hybrid power generation system based electric vehicle has been developed by using MATLAB/Simulink. The Direct Torque and Flux Control (DTFC) is planned using Xilinx ISE software tool in addition to a Modelsim 6.3 software tool that is used for simulation purposes. The FPGA based pulse generation is used to control the induction motor for electric vehicle applications. FPGA has been implemented, in order to verify the minimal error between the simulation results of MATLAB/Simulink and experimental results.

EM Analysis of High Voltage Connector for Hybrid/Electric Vehicle (하이브리드/전기 자동차용 고전압 커넥터의 전자기 해석)

  • Lee, June-Sang;Kim, Jong-Min;Nam, Ki-Hoon;Bae, Hyeon-Ju;Sung, Jin-Tae;Nah, Wan-Soo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.1
    • /
    • pp.131-137
    • /
    • 2011
  • This paper analyzes EM(Electromagnetic) characteristic in the high voltage connector for the hybrid electric vehicle. The connector bridges the electrical components and helps transferring electrical power and signal through it. The necessity of the high voltage and current connector development is emphasized because the hybrid electric vehicle recently uses the high voltage and current more than 500V and 80A. So far there has not been international EMC (Electromagnetic Compatibility) standards to limit the RE(Radiation Emission) from the connector for the hybrid electric vehicle. In this paper we analyzed EM characteristic of the 288V, 65A connector to check if the RE from the high voltage connector could be within the RE limit standard of vehicle. Three-dimensional modeling and simulation was conducted by using MWS(Microwave Studio) of the CST corporation, and the result was compared with the measured RE data, which showed good coincidence each other.

Modeling and Energy Management Strategy in Energetic Macroscopic Representation for a Fuel Cell Hybrid Electric Vehicle

  • Dinh, To Xuan;Thuy, Le Khac;Tien, Nguyen Thanh;Dang, Tri Dung;Ho, Cong Minh;Truong, Hoai Vu Anh;Dao, Hoang Vu;Do, Tri Cuong;Ahn, Kyoung Kwan
    • Journal of Drive and Control
    • /
    • v.16 no.2
    • /
    • pp.80-90
    • /
    • 2019
  • Fuel cell hybrid electric vehicle is an attractive solution to reduce pollutants, such as noise and carbon dioxide emission. This study presents an approach for energy management and control algorithm based on energetic macroscopic representation for a fuel cell hybrid electric vehicle that is powered by proton exchange membrane fuel cell, battery and supercapacitor. First, the detailed model of the fuel cell hybrid electric vehicle, including fuel cell, battery, supercapacitor, DC-DC converters and powertrain system, are built on the energetic macroscopic representation. Next, the power management strategy was applied to manage the energy among the three power sources. Moreover, the control scheme that was based on back-stepping sliding mode control and inversed-model control techniques were deduced. Simulation tests that used a worldwide harmonized light vehicle test procedure standard driving cycle showed the effectiveness of the proposed control method.

Simulator for Monitoring the Operations of Range Extender Electric Vehicles

  • Chun, Tae-Won;Tran, Quang-Vinh;Lee, Hong-Hee;Kim, Heung-Geun;Nho, Eui-Cheol
    • Journal of Power Electronics
    • /
    • v.11 no.4
    • /
    • pp.424-429
    • /
    • 2011
  • In this paper, the simulator of an on-line monitoring system for the range extender electric vehicle has been developed. The messages from the four control modules, the air pressure and fuel level sensors data, and the on/off switching states of 31 indicator lamps can be received through the control area network (CAN), and displayed on the graphic panel. The simulator was designed using the four DSP boards, variable resistors, and toggle switches instead of the four control modules, sensors, and switching state of indicator lamps on an actual series hybrid electric vehicle (SHEV) bus, respectively. The performance of the monitoring technologies was verified with the simulator at the laboratory, and then it was tested on an actual SHEV bus. The simulator is very useful at the initial development of the monitoring system at the hybrid-type or electrical vehicles.

A Variable Voltage Control Method of the High Voltage DC/DC Converter for a Hybrid or Battery Electric Vehicle (친환경 차량용 고전압 DC/DC 컨버터의 가변 전압 제어)

  • Kwon, Tae-Suk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.1
    • /
    • pp.71-77
    • /
    • 2011
  • An analysis, which is focused on electrical losses of an electrical propulsion system with High voltage DC/DC Converter (HDC) for a hybrid and an electric vehicle, is presented. From the analysis, it can be known that the electrical losses are closely related to the dc link voltage of the HDC, and there is an optimal dc link voltage which minimizes the losses. In this paper, the method to decide the optimal dc link voltage is proposed and the comparison on the losses by the control methods of the dc link voltage, during a driving cycle, is performed and the result is also presented.