• Title/Summary/Keyword: Hybrid driving

Search Result 305, Processing Time 0.022 seconds

Performance Evaluation for Application of Large Capacity LPB Pack Equipped to Series Hybrid Articulated Vehicle (직렬형 하이브리드 굴절차량용 대용량 LPB 팩의 적용 및 성능 평가)

  • Lee, Kang-Won;Mok, Jai-Kyun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.11
    • /
    • pp.930-937
    • /
    • 2012
  • Newly developed Series hybrid low-floor articulated vehicle which can meet both road and railway running conditions. It has the rated driving speed of 80 km/h and three driving modes with hybrid(engine+battery) driving mode, engine driving mode, battery driving mode. The battery driving mode requires the several 10 km running without additional charging operation. The vehicle has been equipped with LPB (lithium polymer battery) pack for the series hybrid propulsion system. LPB pack consists of 168 cells (3.7 V in a cell, 80 Ah) in series, DC Circuit breaker, mechanical rack, BMS (battery management system). This paper has shown the design process of LPB pack and application to the vehicle. Driving results in the road was successful to be satisfied with the requirement of the series hybrid vehicle.

Development of Hybrid Electric Compressor Motor Drive System for Hybrid Electrical Vehicles

  • Jung, Tae-Uk
    • Journal of Power Electronics
    • /
    • v.9 no.6
    • /
    • pp.960-968
    • /
    • 2009
  • This paper presents a design optimization process for interior permanent magnet synchronous motors (IPMSM) for hybrid electric compressors (HEC) which are applied to hybrid electrical vehicles. A hybrid electric compressor is composed of an electric motor driving section and an engine driving section which is connected to the engine by a pulley belt. A hybrid electric compressor driving motor requires half of the full driving power of a compressor. Even though an engine is not operated at the idling stop mode, the electric motor drives the air-conditioner compressor by itself so that the air conditioning system can produce its minimum cooling capacity. In this paper, the design optimization of an IPMSM for a 42 (V) applied voltage system is studied using the design of experiment (DOE) and response surface method (RSM) of 6sigma. The driving characteristics of this motor drive system are measured and analyzed by experiment.

A Development of Parallel Type Hybrid Drivetrain System for Transit Bus Part 3 : Optimal Driving Control Algorithm (버스용 병렬형 하이브리드 동력전달계의 개발(III) 제 3 편;최적 주행 제어 알고리즘)

  • 조한상;이장무;박영일
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.6
    • /
    • pp.182-197
    • /
    • 1999
  • Described in this paper is an optimal driving control algorithm which focused on the improvement of fuel economy and the minimization of pollutant emissions in the parallel type hybrid drivertrain system for transit bus. For the energy balance among components such as engine, induction machine and buttery, the algorithm for power split ration determine is proposed. When it is implemented in the hybrid electric control unit(HECU) , using the sub-optimal method and the approximate technique , it is possible to save the memory , to shorten the calculation time, and to achieve the efficient driving actually. A Shift strategy for automated manual transmission is the other side of the driving control algorithm. It enables to select the optimal gear by using several shift maps which were predefined from the proposed method in this paper, As a results of driving simulation, it is proved that these algorithms make the hybrid drivetrain system to reduce fuel consumption and emissions considerably and to have the ability to the efficient use of battery.

  • PDF

Comparison of the Fuel Economy of Series and Parallel Hybrid Bus System Using Dynamic Programming (동적 계획법을 이용한 직렬형 및 병렬형 하이브리드 버스 시스템 연비 비교)

  • Jeong, Jongryeol;Lee, Daeheung;Shin, Changwoo;Jeong, Daebong;Min, Kyoungdoug;Cha, Suk Won;Park, Yeong-Il
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.1
    • /
    • pp.92-98
    • /
    • 2013
  • There are lots of studies about hybrid electric vehicles (HEVs) because of the global warming and energy problems. Series and parallel HEVs are the common types of many developing hybrid vehicle types. Series HEV uses engine only as the generator for the battery but parallel HEV utilizes engine for driving and generating of the vehicle. In this paper, backward simulations based on dynamic programming were conducted for the fuel economy analysis of two different types of hybrid transit buses depending on driving cycles. It is shown that there is a relation between the type of HEV and the characteristics of driving cycles. Regarding the aggressiveness, the series hybrid bus is more efficient than the parallel system on highly aggressive driving cycle. On the other hand, the parallel hybrid bus is more efficient than the series system on low aggressive driving cycle. Based on this results of the paper, it is expected to choose more efficient type of the hybrid buses according to the driving cycle.

The TROPHY (Talented Role-playing Technology with a Dual Polarity Sustainer in Hybrid Mono Board) Driving Method

  • Park, Chang-Joon;Kwak, Jong-Woon;Kim, Tae-Hyung;Park, Hyun-Il;Moon, Seong-Hak
    • Journal of Information Display
    • /
    • v.7 no.4
    • /
    • pp.24-26
    • /
    • 2006
  • We have developed a new driving method named TROPHY(Talented Role-playing Technology with Dual Polarity sustainer in Hybrid Mono board). In this method, the sustain voltage is partially compared to the conventional method and the number of power sources is reduced by voltage level unification during the reset, address and sustain period. The hybrid mono board was especially developed to implement those technologies. Through this, we can lower the cost with the TROPHY compared to the conventional one. It is a suitable technology to improve the reliability of circuit and image sticking problem. We can also reduce the number of driving boards and the EMI problem compared with those of the conventional method.

A Study on the Analysis of the Shift Characteristics and the Driving Comfort for the Parallel Type hybrid Drivertrain System for Transit Bus equipped AMT (자동화 변속기를 장착한 버스용 병렬형 하이브리드 동력전달계의 변속 특성 해석과 승차감에 관한 연구)

  • 조한상;이장무;박영일
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.7
    • /
    • pp.136-148
    • /
    • 1999
  • Detailed mathematical models of hybrid drivertrain components are presented and numerical simulations are carried out to analyze the shift characteristics and to improve the driving comfortability when the hybrid drivetrain is applied at the vehicle . Theoretical results are compared with experimental ones from the dynamometer as same condition in order to prove the appropriateness of modeling . Adding the vehicle body modeling, included in the suspension and the engine mount, it is possible to predict the dynamic behavior and shift characteristics more actually when shifts are occurred by automated manual transmission(AMT). these additional results are also compared with the same simulation ones of internal combustion engined vehicle equipped conventional manual transmission. Hence, it can be expected that the hybrid vehicle with AMT has a good shift quality.

  • PDF

Analysis and Design of Driving Mechanism of Hybrid RMU (복합 소호 방식 RMU 구동 메커니즘 해석 및 설계)

  • Kwon, Byung-Hee;Ahn, Kil-Young;Oh, Il-Sung
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.729-733
    • /
    • 2003
  • Hybrid RMU is a kind of power circuit breaker and protects electric devices from over-current. In this paper we built a dynamic model of RMU driving mechanism using ADAMS and performed a optimal design of several design parameters. Finally we developed a prototype of RMU driving mechanism through results of analysis and confirmed it to satisfy design requisitions.

  • PDF

Hybrid Control Strategy for Autonomous Driving System using HD Map Information (정밀 도로지도 정보를 활용한 자율주행 하이브리드 제어 전략)

  • Yu, Dongyeon;Kim, Donggyu;Choi, Hoseung;Hwang, Sung-Ho
    • Journal of Drive and Control
    • /
    • v.17 no.4
    • /
    • pp.80-86
    • /
    • 2020
  • Autonomous driving is one of the most important new technologies of our time; it has benefits in terms of safety, the environment, and economic issues. Path following algorithms, such as automated lane keeping systems (ALKSs), are key level 3 or higher functions of autonomous driving. Pure-Pursuit and Stanley controllers are widely used because of their good path tracking performance and simplicity. However, with the Pure-Pursuit controller, corner cutting behavior occurs on curved roads, and the Stanley controller has a risk of divergence depending on the response of the steering system. In this study, we use the advantages of each controller to propose a hybrid control strategy that can be stably applied to complex driving environments. The weight of each controller is determined from the global and local curvature indexes calculated from HD map information and the current driving speed. Our experimental results demonstrate the ability of the hybrid controller, which had a cross-track error of under 0.1 m in a virtual environment that simulates K-City, with complex driving environments such as urban areas, community roads, and high-speed driving roads.

Comparative Study of Different Drive-train Driving Performances for the Input Split Type Hybrid Electric Vehicle (입력분기방식 하이브리드 전기자동차의 구동계 구조에 따른 동력 성능 비교 분석)

  • Kim, Jeong-Min
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.4
    • /
    • pp.69-75
    • /
    • 2017
  • In this study, the performances of five input split type hybrid electric vehicle sub-drivetrains were analyzed. The five sub-drivetrains consist of chain, helical gears and planetary gears. For the analyzing above five sub-drivetrains, the mathematical equations were derived. From the analysis, we found that the sub-drivetrain with chain shows slower acceleration performance and larger energy consumption on the city driving. And, the sub-drivetrain with only helical gear shows smallest energy consumption on the city driving. If the sub-drivetrain can change its gear speed, it shows fastest acceleration performance, but it has largest energy consumption on the city driving due to its additional auxiliary components.

Modeling and Analysis of the Speed Profiles for the Gasoline Hybrid Vehicle in the Real Driving Emission Test (가솔린 하이브리드 차량의 실도로 배기규제 평가를 위한 구간 주행 속도 특성 분석 및 해석 모델 개발 연구)

  • Seongsu Kim;Minho Lee;Kyoungha Noh;Junghwan Kim
    • Journal of ILASS-Korea
    • /
    • v.28 no.4
    • /
    • pp.184-190
    • /
    • 2023
  • The European Union has instituted a new emission standard protocol that necessitates real-time measurements from vehicles on actual roads. The adequate development of routes for real driving emissions (RDE) mandates substantial resources, encompassing both vehicles and a portable emission measurement system (PEMS). In this study, a simulation tool was utilized to predict the vehicle speed traversing the routes developed for the RDE measurements. Initially, the vehicle powertrain system was modeled for both a gasoline hybrid vehicle and a gasoline engine-only vehicle. Subsequently, the speed profile for the specified vehicle was constructed based on the RDE route developed for the EURO-6 standard. Finally, the predicted vehicle speed profiles for highway and urban routes were assessed utilizing the actual driving data. The driving model predicted more consistency in the vehicle speed at each driving section. Meanwhile, the human driver tended to accelerate further, and then decelerate in each section, instead of cruising at a predicted section speed.