• Title/Summary/Keyword: Hybrid composite materials

Search Result 484, Processing Time 0.028 seconds

A Study on Selective Composite Patch for Light Weight and Quality Improvement of Battery Module (배터리 모듈의 경량화 및 품질 향상을 위한 선택적 복합재료 패치에 관한 연구)

  • Lee, Seung-Chan;Ha, Sung Kyu
    • Composites Research
    • /
    • v.32 no.1
    • /
    • pp.13-20
    • /
    • 2019
  • In this study, in order to improve the quality issue and component characteristics of the battery module, which is one of the major parts of the electric vehicle. The structure is reinforced by using the composite material and the mechanism structure optimization of Hybrid concept which can overcome the disadvantages of single material was performed and the performance was compared. For this purpose, figure out the main design variables of composite materials according to Classical Laminated Plate Theory (CLPT) and the algorithm for predicting composite material properties have been studied. Based on the mechanical properties of the designed composite materials, finite element analysis (FEM) and the performance of the battery module was verified. Consequently, according to the verification result, Hybrid Battery Module reinforced with Selective Composite Patch can reduce the weight by 30% and reduce the product thickness by 32.5% compared with the existing Al battery module and proved the merit of Hybrid structure such as maintaining impact performance.

Mechanical and Thermal Properties of Phenolic Composite reinforced with Hybrid of PAN-based/Rayon-based Carbon Fabrics (PAN계/Rayon계 탄소 직물 하이브리드 복합재료의 역학적 특성 및 열적 특성에 관한 연구)

  • Kim, Jae-Hong;Park, Jong-Kyu;Jung, Kyung-Ho;Kang, Tae-Jin
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.98-101
    • /
    • 2005
  • The mechanical and thermal properties of PAN-based/Rayon-based carbon fabrics interply hybrid composite materials have been studied. Mechanical properties was improved with increasing amount of continuous PAN-based carbon fabrics. The erosion rate was calculated through torch test. The thermal conductivity of hybrid of spun PAN-based/continuous rayon-based carbon fabric is lower than others.

  • PDF

A Study on the high velocity impact resistance of hybrid composite materials (하이브리드 복합재료의 고속충격 저항성에 관한 연구)

  • Sohn, Se-Won;Kim, Hee-Jae;Kim, Young-Tae
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.273-278
    • /
    • 2003
  • Recently, high-performance hybrid composite materials have been used for various industrial fields because of their superior high strength, high stiffness and lower weight. In this study, manufactured hybrid composite materials are composed of two parts. One is hard-anodized Al5083-O alloy as a face material and the other is high strength aramid fiber ($Twaron^{(R)}$ CT709) laminates as a back-up material. Resistance to penetration is determined by protection ballistic limit($V_{50}$, a static velocity with 50% probability for complete penetration) test method. $V_{50}$ tests with $0^{\circ}$obliquity at room temperature were conducted with 5.56mm ball projectiles that were able to achieve near or complete penetration during high velocity impact tests.

  • PDF

Study on the static and fatigue characteristics of the composite hybrid joint with uni-direction fiber orientation (일방향 복합재료 하이브리드 조인트의 정적 및 피로특성에 관한 연구)

  • Kim Byung Chul;Lim Tae Seong;Park Dong Chang;Lee Dai Gil
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.228-231
    • /
    • 2004
  • For the bolted joint of the composite structure, quasi-isotropic stacking is generally used to increase the bearing strength. For the bolted joint of uni-directional composite, the fatigue life limit of the bolted joint can be improved by applying clamping force though the static strength is still very low. In this paper, the static and fatigue characteristics of hybrid joint are investigated which can overcome the disadvantage of the bolted joint of uni-directional composite under static loading by applying adhesive joining. The experimental result shows that the static strength and fatigue life can be improved by applying clamping force to the hybrid joint and the hybrid joint is a good solution for the efficiency of the composite structures.

  • PDF

Strength of Composite-to-Aluminum Bonding and Bolting Hybrid Joints (복합재-알루미늄 이종재료 하이브리드 체결부 강도 특성에 관한 연구)

  • Jung, Jae-Wo;Kim, Tae-Hwan;Kweon, Jin-Hwe;Choi, Jin-Ho
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.11a
    • /
    • pp.57-60
    • /
    • 2005
  • Composite-to-aluminum joins were tested to get failure loads and modes for three types of joins; adhesive bonding, bolt fastening, and adhesive-bolt hybrid joining. Film type adhesive FM73 and paste type adhesive Cytec EA9394S were used for aluminum and composite bonding to make a double-lap joint. A digital microscope camcorder was used to monitor the failure initiation and propagation. It was found that the hybrid joining is an effective method to strengthen the joint when the mechanical fastening is stronger than the bonding as in the case of using the paste type adhesive. On the contrary, when the strength of the bolted joint is lower than the strength of the bonded joint as in the joint with the film type adhesive, the bolt joining contribute little to the hybrid joint strength.

  • PDF

Effect of non-woven tissues on interlaminar fracture toughness of composite laminate (부직포가 복합적층판의 층간파괴인성에 미치는 효과)

  • 김영배;정성균;강진식;김태형
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.11a
    • /
    • pp.110-114
    • /
    • 2000
  • The Interlaminar fracture behavior of hybrid composite with non-woven carbon tissue was investigated under Mode I (DCB) and Mode II (ENF) loading condition. Hybrid composites were manufactured by means of inserting a non-woven tissue between prepreg layers. Two kinds of specimens were prepared from [0]$_{24}$ and [$0_{12}/0_{12}$]. Where, the symbol "/" means that a non-woven carbon tissue was located at 0/0 mid-plane of the specimen. The interlaminar fracture toughness of hybrid composites was compared with that of CFRP. The fracture surfaces of the specimens were observed using optical microscope and SEM, and the failure mechanism was discussed. The hybrid laminates, which are made by inserting non-woven carbon tissue between layers, were shown to be effective to remarkably improve Mode II fracture toughness.toughness.

  • PDF

Fabrication of Hybrid Composite Plates with an Active Frequency Selective Surface

  • Seo, Yun-Seok;Chun, Heoung-Jae;Hong, Ic-Pyo;Park, Young-Bae;Kim, Yoon-Jae
    • Composites Research
    • /
    • v.30 no.5
    • /
    • pp.273-279
    • /
    • 2017
  • This paper describes the fabrication techniques and analysis of hybrid composite plates with an active frequency selective surface (FSS). For fabricating hybrid composite plate with active FSS, an active FSS with a resonance frequency located in the C band can obtained using varactor diodes. The hybrid composite plate was first designed and simulated to determine its electromagnetic properties using the commercial software HFSS. After simulation, active FSSs and hybrid composite plates were fabricated by mounting with varactor diodes. After fabrication, free space measurement was used to determine the electromagnetic properties of active FSS and the hybrid composite plates. The simulation and experimental results were in good agreement.

Nondestructive Evaluation on Strength Characteristic and Damage Behavior of Al 7075/CFRP Sandwich Composite (Al 7075/CFRP 샌드위치 복합재료의 강도 및 손상특성에 대한 비파괴 평가)

  • Lee, Jin-Kyung;Yoon, Han-Ki;Lee, Joon-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.11
    • /
    • pp.2328-2335
    • /
    • 2002
  • A hybrid composite material has many potential usage due to the high specific strength and the resistance to fatigue, when compared to other composite materials such as fiber reinforced plastic(FRP) and metal matrix composite(MMC). However, the fracture mechanism of hybrid composite material is extremely complicated because of the bonding structure of metals and FRP. In this study, Al 7075 sheets and carbon epoxy preprags were used to fabricate the hybrid composite. Recently, nondestructive technique has been used to evaluate the fracture mechanism of these composite materials. AE technique was used to clarify the microscopic damage behavior and failure mechanism of A17075/CFRP hybrid composite. It was found that AE paralneters such as AE event, energy and amplitude were effective to evaluate the failure process of Al 7075/CFRP composite. In addition, the relationship between the AE signal and the characteristics of fracture surface using optical microscope was discussed.

Effect of the Kind and Content of Raw Materials on Mechanical Performances of Hybrid Composite Boards Composed of Green Tea, Charcoals and Wood Fiber (녹차-숯-목재섬유 복합보드의 역학적 성능에 미치는 구성원료의 종류 및 배합비율의 영향)

  • Park, Han-Min;Heo, Hwang-Sun;Sung, Eun-Jong;Nam, Kyeong-Hwan;Lim, Jae-Seop
    • Journal of the Korean Wood Science and Technology
    • /
    • v.41 no.1
    • /
    • pp.64-76
    • /
    • 2013
  • In this study, eco-friendly hybrid composite boards were manufactured from green tea, three kinds of charcoals and wood fiber for developing interior materials to reinforce the strength performances and the functionalities in addition to performances of the green tea-wood fiber hybrid boards. The effects for the kind and the component ratio of raw materials on mechanical properties were investigated. Bending strength performances of hybrid composite boards were highest in the hybrid composite boards composed of green tea, fine charcoal and wood fiber on average. However, the difference caused by the kind of charcoals was not large. These values were was markedly improved than those of green tea - wood fiber hybrid composite boards reported in previous researches. And it was found that the bending strength performance decreased with increasing component ratios of green tea and charcoals. The difference between urea resins used as the binder showed the higher value in hybrid composite boards using $E_1$ grade urea resin than in those using $E_0$ grade urea resin, but the difference between hybrid composite boards manufactured by both resins decreased markedly than the green tea - wood fiber hybrid composite boards reported in previous research. The internal bond strength of hybrid composite boards was in the order of hybrid composite boards with fine charcoal, activated charcoal and black charcoal, and it was found that the hybrid composite boards with fine charcoal had a similar values to control boards composed of only wood fiber.

Evaluation of AR Characteristics on Microscopic Fracture Mechanism of A17075/CERP Hybrid Composite (Al 7075/CFRP 하이브리드 복합재료의 미시적 파괴특성에 대한 AE특성평가)

  • 이진경;이준현;윤한기
    • Composites Research
    • /
    • v.15 no.5
    • /
    • pp.1-6
    • /
    • 2002
  • When compared to other composite materials such as FRP and MMC, hybrid composite material is more attractive one due to the high specific strength and the resistance to fatigue. However, the fracture mechanism of hybrid composite material is extremely complicated because of the bonding structure of metals and FRP. Recently, nondestructive technique has been used to evaluate the fracture mechanism of these composite materials. In this study. AE technique has been used to clarify the fracture mechanism and the degree of damage for Al 7075/CFRP hybrid composite material. It was found that AE event, energy and amplitude among AE parameters were effective to evaluate fracture process of Al 7075/CFRP composite material. In addition, the relationship between the AE signal and the characteristics of failure surface using optical microscope was discussed.