• Title/Summary/Keyword: Hybrid artificial neural network

Search Result 164, Processing Time 0.031 seconds

A Hybrid Artificial Neural Network and Genetic Algorithm based Cost Estimation Approach for Feature-based Plastic Injection Products (특징기반 플라스틱 사출제품을 위한 하이브리드 인공신경망과 유전자 알고리즘 기반의 비용 평가 방법)

  • Seo, Kwang-Kyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.7
    • /
    • pp.2963-2968
    • /
    • 2011
  • Plastic injection products have been widely used in various electronic appliances and high-tech commodities. However, plastic injection product manufacturers have to spare no efforts to shorten new product development period to introduce new products into the market ahead of other competitors, gaining competitiveness and satisfying customers. The manufacturers cannot only get big target market share rapidly but also the advantage of leading the product price in order to survive in highly competitive market. This paper proposes the cost estimation approach of feature-based plastic injection products by using hybrid artificial neural network and genetic algorithm. The proposed method is to dramatically simplify and shorten the complex conventional cost estimation procedures and the requested computation parameters of plastic injection products. The case study demonstrates the efficiency and effectiveness of the proposed model in solving the cost estimation problem of plastic injection products at the development stage.

The Integrated Methodology of Rough Set Theory and Artificial Neural Network for Business Failure Prediction (도산 예측을 위한 러프집합이론과 인공신경망 통합방법론)

  • Kim, Chang-Yun;Ahn, Byeong-Seok;Cho, Sung-Sik;Kim, Soung-Hie
    • Asia pacific journal of information systems
    • /
    • v.9 no.4
    • /
    • pp.23-40
    • /
    • 1999
  • This paper proposes a hybrid intelligent system that predicts the failure of firms based on the past financial performance data, combining neural network and rough set approach, We can get reduced information table, which implies that the number of evaluation criteria such as financial ratios and qualitative variables and objects (i.e., firms) is reduced with no information loss through rough set approach. And then, this reduced information is used to develop classification rules and train neural network to infer appropriate parameters. Through the reduction of information table, it is expected that the performance of the neural network improve. The rules developed by rough sets show the best prediction accuracy if a case does match any of the rules. The rationale of our hybrid system is using rules developed by rough sets for an object that matches any of the rules and neural network for one that does not match any of them. The effectiveness of our methodology was verified by experiments comparing traditional discriminant analysis and neural network approach with our hybrid approach. For the experiment, the financial data of 2,400 Korean firms during the period 1994-1996 were selected, and for the validation, k-fold validation was used.

  • PDF

Artificial Neural Networks for Interest Rate Forecasting based on Structural Change : A Comparative Analysis of Data Mining Classifiers

  • Oh, Kyong-Joo
    • Journal of the Korean Data and Information Science Society
    • /
    • v.14 no.3
    • /
    • pp.641-651
    • /
    • 2003
  • This study suggests the hybrid models for interest rate forecasting using structural changes (or change points). The basic concept of this proposed model is to obtain significant intervals caused by change points, to identify them as the change-point groups, and to reflect them in interest rate forecasting. The model is composed of three phases. The first phase is to detect successive structural changes in the U. S. Treasury bill rate dataset. The second phase is to forecast the change-point groups with data mining classifiers. The final phase is to forecast interest rates with backpropagation neural networks (BPN). Based on this structure, we propose three hybrid models in terms of data mining classifier: (1) multivariate discriminant analysis (MDA)-supported model, (2) case-based reasoning (CBR)-supported model, and (3) BPN-supported model. Subsequently, we compare these models with a neural network model alone and, in addition, determine which of three classifiers (MDA, CBR and BPN) can perform better. For interest rate forecasting, this study then examines the prediction ability of hybrid models to reflect the structural change.

  • PDF

OAPR-HOML'1: Optimal automated program repair approach based on hybrid improved grasshopper optimization and opposition learning based artificial neural network

  • MAMATHA, T.;RAMA SUBBA REDDY, B.;BINDU, C SHOBA
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.4
    • /
    • pp.261-273
    • /
    • 2022
  • Over the last decade, the scientific community has been actively developing technologies for automated software bug fixes called Automated Program Repair (APR). Several APR techniques have recently been proposed to effectively address multiple classroom programming errors. However, little attention has been paid to the advances in effective APR techniques for software bugs that are widely occurring during the software life cycle maintenance phase. To further enhance the concept of software testing and debugging, we recommend an optimized automated software repair approach based on hybrid technology (OAPR-HOML'1). The first contribution of the proposed OAPR-HOML'1 technique is to introduce an improved grasshopper optimization (IGO) algorithm for fault location identification in the given test projects. Then, we illustrate an opposition learning based artificial neural network (OL-ANN) technique to select AST node-level transformation schemas to create the sketches which provide automated program repair for those faulty projects. Finally, the OAPR-HOML'1 is evaluated using Defects4J benchmark and the performance is compared with the modern technologies number of bugs fixed, accuracy, precession, recall and F-measure.

Grout Injection Control using AI Methodology (인공지능기법을 활용한 그라우트의 주입제어)

  • Lee Chung-In;Jeong Yun-Young
    • Tunnel and Underground Space
    • /
    • v.14 no.6 s.53
    • /
    • pp.399-410
    • /
    • 2004
  • The utilization of AS(Artificial Intelligence) and Database could be considered as an useful access for the application of underground information from the point of a geotechnical methodology. Its detailed usage has been recently studied in many fields of geo-sciences. In this paper, the target of usage is on controlling the injection of grout which more scientific access is needed in the grouting that has been used a major method in many engineering application. As the proposals for this problem it is suggested the methodology consisting of a fuzzy-neural hybrid system and a database. The database was firstly constructed for parameters dynamically varied according to the conditions of rock mass during the injection of grout. And then the conceptional model for the fuzzy-neural hybrid system was investigated fer optimally finding the controlling range of the grout valve. The investigated model applied to four cases, and it is found that the controlling range of the grout valve was reasonably deduced corresponding to the mechanical phenomena occurred by the injection of grout. Consequently, the algorithm organizing the fuzzy-neural hybrid system and the database as a system can be considered as a tool for controlling the injection condition of grout.

Hybrid Model Approach to the Complexity of Stock Trading Decisions in Turkey

  • CALISKAN CAVDAR, Seyma;AYDIN, Alev Dilek
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.7 no.10
    • /
    • pp.9-21
    • /
    • 2020
  • The aim of this paper is to predict the Borsa Istanbul (BIST) 30 index movements to determine the most accurate buy and sell decisions using the methods of Artificial Neural Networks (ANN) and Genetic Algorithm (GA). We combined these two methods to obtain a hybrid intelligence method, which we apply. In the financial markets, over 100 technical indicators can be used. However, several of them are preferred by analysts. In this study, we employed nine of these technical indicators. They are moving average convergence divergence (MACD), relative strength index (RSI), commodity channel index (CCI), momentum, directional movement index (DMI), stochastic oscillator, on-balance volume (OBV), average directional movement index (ADX), and simple moving averages (3-day moving average, 5-day moving average, 10-day moving average, 14-day moving average, 20-day moving average, 22-day moving average, 50-day moving average, 100-day moving average, 200-day moving average). In this regard, we combined these two techniques and obtained a hybrid intelligence method. By applying this hybrid model to each of these indicators, we forecast the movements of the Borsa Istanbul (BIST) 30 index. The experimental result indicates that our best proposed hybrid model has a successful forecast rate of 75%, which is higher than the single ANN or GA forecasting models.

Application of ANN modeling for oily wastewater treatment by hybrid PAC-MF process

  • Abbasi, Mohsen;Rasouli, Yaser;Jowkar, Peyman
    • Membrane and Water Treatment
    • /
    • v.9 no.4
    • /
    • pp.285-292
    • /
    • 2018
  • In the following study, Artificial Neural Network (ANN) is used for prediction of permeate flux decline during oily wastewater treatment by hybrid powdered activated carbon-microfiltration (PAC-MF) process using mullite and mullite-alumina ceramic membranes. Permeate flux is predicted as a function of time and PAC concentration. To optimize the networks performance, different transfer functions and different initial weights and biases have been tested. Totally, more than 850,000 different networks are tested for both membranes. The results showed that 10:6 and 9:20 neural networks work best for mullite and mullite-alumina ceramic membranes in PAC-MF process, respectively. These networks provide low mean squared error and high linearity between target and predicted data (high $R^2$ value). Finally, the results present that ANN provide best results ($R^2$ value equal to 0.99999) for prediction of permeation flux decline during oily wastewater treatment in PAC-MF process by ceramic membranes.

Hybrid SVM/ANN Algorithm for Efficient Indoor Positioning Determination in WLAN Environment (WLAN 환경에서 효율적인 실내측위 결정을 위한 혼합 SVM/ANN 알고리즘)

  • Kwon, Yong-Man;Lee, Jang-Jae
    • Journal of Integrative Natural Science
    • /
    • v.4 no.3
    • /
    • pp.238-242
    • /
    • 2011
  • For any pattern matching based algorithm in WLAN environment, the characteristics of signal to noise ratio(SNR) to multiple access points(APs) are utilized to establish database in the training phase, and in the estimation phase, the actual two dimensional coordinates of mobile unit(MU) are estimated based on the comparison between the new recorded SNR and fingerprints stored in database. The system that uses the artificial neural network(ANN) falls in a local minima when it learns many nonlinear data, and its classification accuracy ratio becomes low. To make up for this risk, the SVM/ANN hybrid algorithm is proposed in this paper. The proposed algorithm is the method that ANN learns selectively after clustering the SNR data by SVM, then more improved performance estimation can be obtained than using ANN only and The proposed algorithm can make the higher classification accuracy by decreasing the nonlinearity of the massive data during the training procedure. Experimental results indicate that the proposed SVM/ANN hybrid algorithm generally outperforms ANN algorithm.

Hybrid fuzzy model to predict strength and optimum compositions of natural Alumina-Silica-based geopolymers

  • Nadiri, Ata Allah;Asadi, Somayeh;Babaizadeh, Hamed;Naderi, Keivan
    • Computers and Concrete
    • /
    • v.21 no.1
    • /
    • pp.103-110
    • /
    • 2018
  • This study introduces the supervised committee fuzzy model as a hybrid fuzzy model to predict compressive strength (CS) of geopolymers prepared from alumina-silica products. For this purpose, more than 50 experimental data that evaluated the effect of $Al_2O_3/SiO_2$, $Na_2O/Al_2O_3$, $Na_2O/H_2O$ and Na/[Na+K] on (CS) of geopolymers were collected from the literature. Then, three different Fuzzy Logic (FL) models (Sugeno fuzzy logic (SFL), Mamdani fuzzy logic (MFL), and Larsen fuzzy logic (LFL)) were adopted to overcome the inherent uncertainty of geochemical parameters and to predict CS. After validating the model, it was found that the SFL model is superior to MFL and LFL models, but each of the FL models has advantages to predict CS. Therefore, to achieve the optimal performance, the supervised committee fuzzy logic (SCFL) model was developed as a hybrid method to combine the benefits of individual FL models. The SCFL employs an artificial neural network (ANN) model to re-predict the CS of three FL model predictions. The results also show significant fitting improvement in comparison with individual FL models.

ANN based on forgetting factor for online model updating in substructure pseudo-dynamic hybrid simulation

  • Wang, Yan Hua;Lv, Jing;Wu, Jing;Wang, Cheng
    • Smart Structures and Systems
    • /
    • v.26 no.1
    • /
    • pp.63-75
    • /
    • 2020
  • Substructure pseudo-dynamic hybrid simulation (SPDHS) combining the advantages of physical experiments and numerical simulation has become an important testing method for evaluating the dynamic responses of structures. Various parameter identification methods have been proposed for online model updating. However, if there is large model gap between the assumed numerical models and the real models, the parameter identification methods will cause large prediction errors. This study presents an ANN (artificial neural network) method based on forgetting factor. During the SPDHS of model updating, a dynamic sample window is formed in each loading step with forgetting factor to keep balance between the new samples and historical ones. The effectiveness and anti-noise ability of this method are evaluated by numerical analysis of a six-story frame structure with BRBs (Buckling Restrained Brace). One BRB is simulated in OpenFresco as the experimental substructure, while the rest is modeled in MATLAB. The results show that ANN is able to present more hysteresis behaviors that do not exist in the initial assumed numerical models. It is demonstrated that the proposed method has good adaptability and prediction accuracy of restoring force even under different loading histories.