• 제목/요약/키워드: Hybrid air conditioning system

검색결과 107건 처리시간 0.032초

가열 공기 유입에 따른 복합형 태양열 가열기 공기-물 제조 성능에 관한 연구 (Performance Evaluation of Hybrid Solar Air-Water Heater when the Heated Air is used as Inlet Air during Air and Water is Heated Simultaneously)

  • 최휘웅;윤정인;손창효;최광환
    • 한국태양에너지학회 논문집
    • /
    • 제35권5호
    • /
    • pp.21-29
    • /
    • 2015
  • In this study, the performance of hybrid solar air-water heater when the heated air was used as inlet air was investigated during air and liquid were heated simultaneously. Temperature difference between inlet air and ambient was set as $0^{\circ}C$, $13^{\circ}C$ and $22^{\circ}C$ and it was maintained during the daily operation. As a result, thermal efficiency of liquid heating was increased when the inlet air temperature was increased and heat gain of the water in heat storage tank was also increased with increment of temperature difference between inlet air and ambient temperature. On the contrary to this, the decrement of air heating efficiency and total efficiency of collector was confirmed with increment of inlet air temperature and it is considered that heat gain of liquid side is lower than heat loss of air side that occurring by using heated air as inlet air of collector. So, from these results, maximum temperature that the liquid in heat storage tank can reach was expected to increase if the return air or any heated air was used as inlet air. But air and total efficiency of hybrid solar air-water is decreased, so using outdoor air as inlet air is considered as better way on perspective of using of solar thermal energy by hybrid solar collector. However, it is hard to conclude that using outdoor air is better than heated air on the perspective of energy saving of building because the performance of heat storage performance was increased even air and total thermal efficiency was decreased, so the necessity of more profound consideration about these result in further research was confirmed for putting the hybrid solar air-water heater to practical use.

공동주택용 태양열원 급탕시스템의 운전성능 연구 (A Study on the Operating Performance of Solar Assisted Hot Water System for Apartment Houses)

  • 이윤규;황인주
    • 설비공학논문집
    • /
    • 제15권11호
    • /
    • pp.928-936
    • /
    • 2003
  • In the present study, feasibility investigation on the solar assisted hot water supply system for apartment houses was carried out by the review of service facility and heat load pattern. Also analysis and experiment of the small sized system model were performed. This hybrid system are consists of solar collector, heat storage tank, controller, and gas boiler using LPG as a secondary heat source. The analytical results showed a good agreement with experimental data. We found that this hybrid system could reduce the energy cost by 30% for hot water compared to typical boiler system in the apartment houses. Also we showed that this model could be used for the energy and economic analysis of the hybrid system.

제3종 하이브리드 환기시스템을 적용한 공동주택의 환기성능 예측 (A Prediction of Hybrid Ventilation System Performance in Apartment House)

  • 황지현;오창용;김무현
    • 설비공학논문집
    • /
    • 제18권7호
    • /
    • pp.541-548
    • /
    • 2006
  • A hybrid ventilation system was introduced to predict the ventilation performance of the apartments. This ventilation system was composed of the natural supply-air inlet and the forced exhaust-air outlet. Analysis was conducted by CFD technique and was performed on three ventilating flow rates; 30, 60, $120m^3/h$. As the results, residents feel comfortable thermally for $60m^3/h$. In the case of $120m^3/h$, however, residents feel uncomfortable both thermally and in air currents. In this study the energy saving for space heating is also an important factor. In the case of whole region with $180m^3/h$, residents feel comfortable at each region of the model apartment. It is shown that this hybrid ventilation system is possible method for the apartment house.

기후 시나리오 SSP5와 SSP1에서의 2100년 서울 지역에서의 여름철 주택 냉방을 위한 하이브리드 제습 냉방 시스템 성능 분석 (Performance Analysis of a Hybrid Desiccant Cooling System for Residential Air Conditioning in the Seoul Region under the Climate Scenarios SSP5 and SSP1)

  • 이율호;박성진
    • 한국수소및신에너지학회논문집
    • /
    • 제34권6호
    • /
    • pp.773-784
    • /
    • 2023
  • In this study, a comparative analysis between an electric heat pump cooling system and a hybrid desiccant cooling system is conducted. Desiccant cooling is a thermal driven system with potentially lower electric power consumption than electric heat pump. Hybrid desiccant cooling system simulation includes components such as a desiccant rotor, direct and indirect evaporative coolers, heat exchangers, fans, and a heat pump system. Using dynamic simulations by climate conditions, house cooling temperatures and power consumption for both systems are analyzed for 16 days period in the summer season under climate scenarios for the year 2100 prediction. The results reveal that the hybrid desiccant cooling system exhibits a 5-18% reduction in electric consumption compared to the heat pump system.

하이브리드 제습냉방시스템의 성능평가 연구 (A Study on the Performance Evaluation of a Hybrid Desiccant Cooling System)

  • 황원백;김용찬;이대영
    • 설비공학논문집
    • /
    • 제24권2호
    • /
    • pp.121-128
    • /
    • 2012
  • Improvement in the energy efficiency has been studied of the desiccant cooling system by applying a vapor compression type heat pump to modify the system into a hybrid system. The cycle simulation was performed and the results were compared between a reference desiccant cooling system composed of a desiccant rotor, a sensible rotor and a regenerative evaporative cooler, and a hybrid desiccant cooling system with the sensible rotor being replaced by a heat pump. Though the electric consumption increases as much as the compressor power consumption, the total cooling capacity increases and the thermal energy input decreases by the addition of the heat pump. Therefore, the total energy efficiency can be improved if the increase in the electric consumption can be compensated with the increase in the cooling capacity and the decrease in the thermal energy input. The results showed that the total energy efficiency is optimized at a certain heat pump capacity. When the heat from the CHP plant is used for the thermal energy input, the energy consumption of the hybrid system is reduced by 20~30% compared with the reference system when the heat pump shares 30~40% of the total cooling capacity.

상압형 MCFC/가스터빈 하이브리드 시스템의 구성방법에 따른 설계성능 분석 (Effect of System Configuration on Design Performance of Atmospheric Pressure MCFC/Gas Turbine Hybrid Systems)

  • 오경석;김동섭
    • 설비공학논문집
    • /
    • 제16권11호
    • /
    • pp.1021-1027
    • /
    • 2004
  • Design performances of various configurations of hybrid systems combining an atmospheric pressure molten carbonate fuel cell and a gas turbine have been analyzed. Two different fuel reforming methods (internal and external reforming) were considered. Influences of turbine inflow heating method, location of fuel combustor and associated component arrangements were investigated. In general, internal reforming leads to higher system efficiencies. The optimum design pressure ratio varies among different system configurations. In particular, the design point selection is closely related to the allowable turbine inlet temperature. Configurations with direct heating of turbine inlet flow may realize both higher efficiency and higher specific power than those with indirect heating.

농수산물 관리를 위한 냉난방 동시형 멀티 에어컨 시스템 (Simultaneous Heating and Cooling Multi-Air Conditioning System for Agricultural Products Management)

  • 신진섭;홍지영
    • 한국인터넷방송통신학회논문지
    • /
    • 제20권6호
    • /
    • pp.65-70
    • /
    • 2020
  • 본 논문에서는 고효율의 냉난방시스템을 구축하기 위해 냉방기와 난방기를 한 대로 동시에 할 수 있는 냉난방 동시형 멀티 에어컨 시스템을 개발하고 하이브리드형 식물공장에 적용하여 복합형 농장의 자동화가 가능하도록 하였다. 이를 위하여 난방시에 응축기 기능을 하는 열교환기가 냉방시에는 증발기 기능을 하도록 함으로써 냉난방을 동시에 구현하도록 하였다. 실험을 위하여 냉난방 동시형 멀티 에어컨시스템을 제작하고 농장의 식물공장에 적용시켜 식물의 재배 및 보관, 건조 등을 할 수 있도록 하였다. 그 결과 하나의 시스템으로 냉난방을 동시에 해결하는 에너지 절약 시스템으로 농산물의 온도환경을 조절할 수 있었으며 에어컨과 보일러를 동시에 설치하지 않아도 되는 공조시스템을 구현하여 효율적인 농작물 관리가 가능하였다.

지열-태양열원 복합시스템의 성능평가에 관한 연구 (A Study on the Performance Evaluation of Hybrid Energy System with Geothermal and Solar Heat Sources)

  • 황인주;우남섭;이홍철
    • 설비공학논문집
    • /
    • 제18권3호
    • /
    • pp.279-286
    • /
    • 2006
  • The present study concerns the annual performance evaluation of a hybrid-renewable energy system with geothermal and solar heat sources for hot water, heating and cooling of the residential buildings. The hybrid energy system consists of ground source heat pump of 2 RT for cooling, solar collectors of $4.8m^2$, storage tank of 250 liters and gas fired backup boiler of 11.6 kW. The averaged coefficients of performance of geothermal heat pump system during cooling and heating seasons are measured as 4.1 and 3.5, respectively. Also solar fraction for hot water is measured as 35 percent. Overall, the results shows that the hybrid-renewable energy system satisfactorily operated under all climatic conditions.

Development of Hybrid Electric Compressor Motor Drive System for Hybrid Electrical Vehicles

  • Jung, Tae-Uk
    • Journal of Power Electronics
    • /
    • 제9권6호
    • /
    • pp.960-968
    • /
    • 2009
  • This paper presents a design optimization process for interior permanent magnet synchronous motors (IPMSM) for hybrid electric compressors (HEC) which are applied to hybrid electrical vehicles. A hybrid electric compressor is composed of an electric motor driving section and an engine driving section which is connected to the engine by a pulley belt. A hybrid electric compressor driving motor requires half of the full driving power of a compressor. Even though an engine is not operated at the idling stop mode, the electric motor drives the air-conditioner compressor by itself so that the air conditioning system can produce its minimum cooling capacity. In this paper, the design optimization of an IPMSM for a 42 (V) applied voltage system is studied using the design of experiment (DOE) and response surface method (RSM) of 6sigma. The driving characteristics of this motor drive system are measured and analyzed by experiment.