• Title/Summary/Keyword: Hybrid Spatial DBMS

Search Result 5, Processing Time 0.021 seconds

Query Optimization Scheme using Query Classification in Hybrid Spatial DBMS (하이브리드 공간 DBMS에서 질의 분류를 이용한 최적화 기법)

  • Chung, Weon-Il;Jang, Seok-Kyu
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.1
    • /
    • pp.290-299
    • /
    • 2008
  • We propose the query optimization technique using query classification in hybrid spatial DBMS. In our approach, user queries should to be classified into three types: memory query, disk query, and hybrid query. Specialty, In the hybrid query processing, the query predicate is divided by comparison between materialized view creating conditions and user query conditions. Then, the deductions of the classified queries' cost formula are used for the query optimization. The optimization is mainly done by the selection algorithm of the smallest cost data access path. Our approach improves the performance of hybrid spatial DBMS than traditional disk-based DBMS by $20%{\sim}50%$.

Developing a 3D Indoor Evacuation Simulator using a Spatial DBMS (공간 DBMS를 활용한 3차원 실내 대피 경로 안내 시스템)

  • Kim, Geun-Han;Kim, Hye-Young;Jun, Chul-Min
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.16 no.4
    • /
    • pp.41-48
    • /
    • 2008
  • Currently used 3D models, which are mostly focused on visualization of 3D objects and lack topological structure, have limitation in being used for 3D spatial analyses and applications. However, implementing a full topology for the indoor spatial objects is less practical due to the increase of complexity and computation time. This study suggests an alternative method to build a 3D indoor model with less complexity using a spatial DBMS. Storing spatial and nonspatial information of indoor spaces in DB tables enables faster queries, computation and analyses. Also it is possible to display them in 2D or 3D using the queried information. This study suggests a 2D-3D hybrid data model, which combines the 2D topology constructed from CAD floor plans and stored in a spatial DBMS and the 3D visualization functionality. This study showed the process to build the proposed model in a spatial DBMS and use spatial functions and queries to visualize in 2D and 3D. And, then, as an example application, it illustrated the process to build an indoor evacuation simulator.

  • PDF

A Lossless Vector Data Compression Using the Hybrid Approach of BytePacking and Lempel-Ziv in Embedded DBMS (임베디드 DBMS에서 바이트패킹과 Lempel-Ziv 방법을 혼합한 무손실 벡터 데이터 압축 기법)

  • Moon, Gyeong-Gi;Joo, Yong-Jin;Park, Soo-Hong
    • Spatial Information Research
    • /
    • v.19 no.1
    • /
    • pp.107-116
    • /
    • 2011
  • Due to development of environment of wireless Internet, location based services on the basis of spatial data have been increased such as real time traffic information as well as CNS(Car Navigation System) to provide mobile user with route guidance to the destination. However, the current application adopting the file-based system has limitation of managing and storing the huge amount of spatial data. In order to supplement this challenge, research which is capable of managing large amounts of spatial data based on embedded database system is surely demanded. For this reason, this study aims to suggest the lossless compression technique by using the hybrid approach of BytePacking and Lempel-Ziv which can be applicable in DBMS so as to save a mass spatial data efficiently. We apply the proposed compression technique to actual the Seoul and Inchcon metropolitan area and compared the existing method with suggested one using the same data through analyzing the query processing duration until the reconstruction. As a result of comparison, we have come to the conclusion that suggested technique is far more performance on spatial data demanding high location accuracy than the previous techniques.

Geovisualization of Coastal Ocean Model Data Using Web Services and Smartphone Apps (웹서비스와 스마트폰앱을 이용한 연안해양모델 예측자료의 시각화시스템 구현)

  • Kim, Hyung-Woo;Koo, Bon-Ho;Woo, Seung-Buhm;Lee, Ho-Sang;Lee, Yang-Won
    • Spatial Information Research
    • /
    • v.22 no.2
    • /
    • pp.63-71
    • /
    • 2014
  • Ocean leisure sports have recently emerged as one of so-called blue ocean industries. They are sensitive to diverse environmental conditions such as current, temperature, and salinity, which can increase needs of forecasting data as well as in-situ observations for the ocean. In this context, a Web-based geovisualization system for coastal information produced by model forecasts was implemented for use in supporting various ocean activities. First, FVCOM(Finite Volume Coastal Ocean Model) was selected as a forecasting model, and its data was preprocessed by a spatial interpolation and sampling library. The interpolated raster data for water surface elevation, temperature, and salinity were stored in image files, and the vector data for currents including speed and direction were imported into a distributed DBMS(Database Management System). Web services in REST(Representational State Transfer) API(Application Programming Interface) were composed using Spring Framework and integrated with desktop and mobile applications developed on the basis of hybrid structure, which can realize a cross-platform environment for geovisualization.

Design and Implementation of Query Classification Component in Multi-Level DBMS for Location Based Service (위치기반 서비스를 위한 다중레벨 DBMS에 질의 분류 컴포넌트의 설계 및 구현)

  • Jang Seok-Kyu;Eo Sang Hun;Kim Myung-Heun;Bae Hae-Young
    • The KIPS Transactions:PartD
    • /
    • v.12D no.5 s.101
    • /
    • pp.689-698
    • /
    • 2005
  • Various systems are used to provide the location based services. But, the existing systems have some problems which have difficulties in dealing with faster services for above million people. In order to solve it, a multi-level DBMS which supports both fast data processing and large data management support should be used. The multi-level DBMS with snapshots has all the data existing in disk database and the data which are required to be processed for fast processing are managed in main memory database as snapshots. To optimize performance of this system for location based services, the query classification component which classifies the queries for efficient snapshot usage is needed. In this paper, the query classification component in multi-level DBMS for location based services is designed and implemented. The proposed component classifies queries into three types: (1) memory query, (2) disk query, (3) hybrid query, and increases the rate of snapshot usage. In addition, it applies division mechanisms which divide aspatial and spatial filter condition for partial snapshot usage. Hence, the proposed component enhances system performance by maximizing the usage of snapshot as a result of the efficient query classification.