• Title/Summary/Keyword: Hybrid Platform

Search Result 205, Processing Time 0.023 seconds

An Optimized Strategy for Genome Assembly of Sanger/pyrosequencing Hybrid Data using Available Software

  • Jeong, Hae-Young;Kim, Ji-Hyun F.
    • Genomics & Informatics
    • /
    • v.6 no.2
    • /
    • pp.87-90
    • /
    • 2008
  • During the last four years, the pyrosequencing-based 454 platform has rapidly displaced the traditional Sanger sequencing method due to its high throughput and cost effectiveness. Meanwhile, the Sanger sequencing methodology still provides the longest reads, and paired-end sequencing that is based on that chemistry offers an opportunity to ensure accurate assembly results. In this report, we describe an optimized approach for hybrid de novo genome assembly using pyrosequencing data and varying amounts of Sanger-type reads. 454 platform-derived contigs can be used as single non-breakable virtual reads or converted to simpler contigs that consist of editable, overlapping pseudoreads. These modified contigs maintain their integrity at the first jumpstarting assembly stage and are edited by fragmenting and rejoining. Pre-existing assembly software then can be applied for mixed assembly with 454-derived data and Sanger reads. An effective method for identifying genomic differences between reference and sample sequences in whole-genome resequencing procedures also is suggested.

An Experimental Study on Dynamic Performance of Large Floating Wave-Offshore Hybrid Power Generation Platform in Extreme Conditions (대형 부유식 파력-해상풍력 복합발전 구조물의 극한환경 운동 성능에 대한 실험적 연구)

  • Kim, Kyong Hwan;Hong, Jang Pyo;Park, Sewan;Lee, Kangsu;Hong, Keyyong
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.19 no.1
    • /
    • pp.7-17
    • /
    • 2016
  • The present study experimentally considers dynamic performance of large floating wave-offshore hybrid power generation platform in extreme conditions. In order to evaluate the motion performance of the large floating hybrid power generation platform, 1/50 scaled model was manufactured. A mooring line was also manufactured, and free-decay and static pull-out tests were carried out to check the mooring model. A mooring line table was introduced to satisfy the water depth, and environmental conditions were checked. Motion responses in regular waves were measured and complicated environmental conditions including wave, wind, and current were applied to see the dynamic performance in extreme/survival conditions. Maximum motion and acceleration were judged following the design criteria, and maximum offset and mooring tension were also checked based on the rule. The characteristics of hybrid power generation platform are discussed based on these data.

Design and Implementation of the Chronic Disease Management Platform based on Personal Health Records (개인건강기록 기반 만성질환 관리 플랫폼의 설계 및 구현)

  • Song, Je-Min;Lee, Yong-Jun;Nam, Kwang-Woo
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.17 no.1
    • /
    • pp.47-62
    • /
    • 2012
  • To propagate clinical disease management service, there should be built a ecosystem where service developers, service providers, device suppliers closely cooperate for u-Health platform. However, most u-Health platform is difficult to build an effective ecosystem due to the lack of secure and effective PHR(Personal Health Record) management, the lack of personalized and intelligent service, difficulties of N-screen service. To solve these problems we suggest the CDMP(Chronic Disease Management Platform) architecture. The CDMP is a software platform that provides the core functions to develop the chronic disease management services and performs a hub function for the link and integration rbetween various services and systems. CDMP is SOA based platform that enables a provision of reusability, expansibility and it provides open API where everybody can share information, contents and services easily. CDMP supports the multi platform system foN-screen service and the self management functions via SNS. In this paper, we design and implement the CDMP including PHR service based on hybrid data model for privacy preservation. Experiment results prove the effectiveness of hybrid model-based PHR service.

Design and Implementation of Hybrid Mobile App Framework (하이브리드 모바일 앱 프레임워크 설계 및 구현)

  • Jung, Woo-Jin;Oh, Jang-Hoon;Yoon, Dong-Weon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.9
    • /
    • pp.1990-1996
    • /
    • 2012
  • In this paper, in order to improve the execution performance and serviceability of cross-platform applications frameworks based on the existing web applications, we design and implement a new hybrid application framework named as WApplE.js, which enables direct control of native UI(User Interface) of mobile operating systems and various resources via JavaScript. We first present the design results for the overall software structure and the configuration of every layer of WApplE.js, and then analyze the processes for calling and handling APIs in the implemented hybrid application framework. In addition, the results of comparison of features to the existing frameworks are presented.

Hybrid Learning-Based Cell Morphology Profiling Framework for Classifying Cancer Heterogeneity (암의 이질성 분류를 위한 하이브리드 학습 기반 세포 형태 프로파일링 기법)

  • Min, Chanhong;Jeong, Hyuntae;Yang, Sejung;Shin, Jennifer Hyunjong
    • Journal of Biomedical Engineering Research
    • /
    • v.42 no.5
    • /
    • pp.232-240
    • /
    • 2021
  • Heterogeneity in cancer is the major obstacle for precision medicine and has become a critical issue in the field of a cancer diagnosis. Many attempts were made to disentangle the complexity by molecular classification. However, multi-dimensional information from dynamic responses of cancer poses fundamental limitations on biomolecular marker-based conventional approaches. Cell morphology, which reflects the physiological state of the cell, can be used to track the temporal behavior of cancer cells conveniently. Here, we first present a hybrid learning-based platform that extracts cell morphology in a time-dependent manner using a deep convolutional neural network to incorporate multivariate data. Feature selection from more than 200 morphological features is conducted, which filters out less significant variables to enhance interpretation. Our platform then performs unsupervised clustering to unveil dynamic behavior patterns hidden from a high-dimensional dataset. As a result, we visualize morphology state-space by two-dimensional embedding as well as representative morphology clusters and trajectories. This cell morphology profiling strategy by hybrid learning enables simplification of the heterogeneous population of cancer.

Solar-powered multi-scale sensor node on Imote2 platform for hybrid SHM in cable-stayed bridge

  • Ho, Duc-Duy;Lee, Po-Young;Nguyen, Khac-Duy;Hong, Dong-Soo;Lee, So-Young;Kim, Jeong-Tae;Shin, Sung-Woo;Yun, Chung-Bang;Shinozuka, Masanobu
    • Smart Structures and Systems
    • /
    • v.9 no.2
    • /
    • pp.145-164
    • /
    • 2012
  • In this paper, solar-powered, multi-scale, vibration-impedance sensor node on Imote2 platform is presented for hybrid structural health monitoring (SHM) in cable-stayed bridge. In order to achieve the objective, the following approaches are proposed. Firstly, vibration- and impedance-based hybrid SHM methods are briefly described. Secondly, the multi-scale vibration and impedance sensor node on Imote2-platform is presented on the design of hardware components and embedded software for vibration- and impedance-based SHM. In this approach, a solar-powered energy harvesting is implemented for autonomous operation of the smart sensor nodes. Finally, the feasibility and practicality of the smart sensor-based SHM system is evaluated on a full-scale cable-stayed bridge, Hwamyung Bridge in Korea. Successful level of wireless communication and solar-power supply for smart sensor nodes are verified. Also, vibration and impedance responses measured from the target bridge which experiences various weather conditions are examined for the robust long-term monitoring capability of the smart sensor system.

Topology Optimization Application for Initial Platform Design of 10 MW Grade Floating Type Wave-wind Hybrid Power Generation System (10MW급 부유식 파력-풍력 복합발전 시스템 플랫폼 초기설계를 위한 위상최적화 응용)

  • Song, Chang Yong;Lee, Kangsu;Hong, Keyyong
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.19 no.3
    • /
    • pp.194-202
    • /
    • 2016
  • This study aims to review a topology optimization based on finite element analysis (FEA) for conceptual design of platform in the 10MW class floating type wave-wind hybrid power generation system (WHPGS). Two topology optimization theories, density method (DM) and homogenization design method (HDM) were used to check which one is more effective for a simplified structural design problem prior to the topology optimization of platform of WHPGS. From the results of the simplified design problem, the HDM was applied to the topology optimization of platform of WHPGS. For the conceptual platform design of WHPGS, FEA model was created and then the structural analysis was performed considering offshore environmental loads at installation site. Hydrodynamics analysis was carried out to calculate pressure on platform and tension forces in mooring lines induced from the offshore environmental loads such as design wave and current. Loading conditions for the structural analysis included the analysis results from the hydrodynamic analysis and the weights of WHPGS. Boundary condition was realized using inertia relief method. The topology optimization of WHPGS platform was performed using the HDM, and then the conceptual arrangement of main structural members was suggested. From the results, it was confirmed that the topology optimization might be a useful tool to design the conceptual arrangement of main structural members for a newly developed offshore structure such as the floating type WHPGS.

Intelligent WAVE/DSRC Platform Technology for Efficient Data Transmission in Vehicle Communication (차량 통신에서의 효율적인 데이터 전송을 위한 지능형 WAVE/DSRC 플랫폼 기술 연구)

  • Kim, Jae Wan;Jeon, Hyun Min;Kim, Swung Ku
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.9
    • /
    • pp.1519-1526
    • /
    • 2017
  • The existing DSRC(Dedicated Short Range Communication) scheme has a limitation in providing various services through short-range wireless communication. Therefore, it is necessary to develop an intelligent WAVE/DSRC hybrid wireless platform that can improve data transmission speed and extend the effective communication range. This paper introduces WAVE/DSRC integrated platform technology using WAVE(Wireless Access in Vehicle Environments) to overcome the disadvantages of DSRC. First, the desinged software configuration of the WAVE/DSRC integrated platform is described. Then each task operation scheme and WAVE software design are described. By applying the WAVE/DSRC integrated platform, we can compensate the shortcomings of DSRC. It can provide more accurate and reliable services.

Effective Silicon Oxide Formation on Silica-on-Silicon Platforms for Optical Hybrid Integration

  • Kim, Tae-Hong;Sung, Hee-Kyung;Choi, Ji-Won;Yoon, Ki-Hyun
    • ETRI Journal
    • /
    • v.25 no.2
    • /
    • pp.73-80
    • /
    • 2003
  • This paper describes an effective method for forming silicon oxide on silica-on-silicon platforms, which results in excellent characteristics for hybrid integration. Among the many processes involved in fabricating silica-on-silicon platforms with planar lightwave circuits (PLCs), the process for forming silicon oxide on an etched silicon substrate is very important for obtaining transparent silica film because it determines the compatibility at the interface between the silicon and the silica film. To investigate the effects of the formation process of the silicon oxide on the characteristics of the silica PLC platform, we compared two silicon oxide formation processes: thermal oxidation and plasma-enhanced chemical vapor deposition (PECVD). Thermal oxidation in fabricating silica platforms generates defects and a cristobalite crystal phase, which results in deterioration of the optical waveguide characteristics. On the other hand, a silica platform with the silicon oxide layer deposited by PECVD has a transparent planar optical waveguide because the crystal growth of the silica has been suppressed. We confirm that the PECVD method is an effective process for silicon oxide formation for a silica platform with excellent characteristics.

  • PDF