• Title/Summary/Keyword: Hybrid Motor

Search Result 686, Processing Time 0.022 seconds

A design of hybrid PWM inverter using microprocessor (마이크로프로세서를 이용한 하이브리드 PWM 인버터의 설계)

  • 노창주;임재문;박중순
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.37-50
    • /
    • 1987
  • In an effort to conserve electric power, variable voltage variable frequency pulse width modulated (PWM) inverters are being applied increasingly to the variable speed control of the induction motors. The use of the PWM technique in motor drive applications is considered advantageous in many ways. For industrial applications, the PWM drive obtains its DC input through simple uncontrolled rectification of the commercial AC line and is favored for its good power factor, good efficiency, its relative freedom regulation problem, and mainly for its ability to operate the motor with nearly sinusoidal current waveforms. The purpose of this paper is to design a three phase natural sampled PWM inverter using microprocessor with simple control algorithm and hybrid control circuit has been built to implement this PWM scheme. In this system, the microprocessor can be used only for calculations directly related to motor control tasks by the design of hybrid circuit which sends PWM signals to the motor.

  • PDF

Basic Design of Bearingless Switched Reluctance Motor with Hybrid Stator poles

  • Wang, Huijun;Liu, Jianfeng;Ahn, Jin-Woo
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.1 no.3
    • /
    • pp.336-346
    • /
    • 2012
  • In this paper, a novel bearingless switched reluctance motor (BLSRM) with hybrid stator poles is proposed. The structure and operating principle are presented. In order to describe the design methodology clearly, analytical torque and radial force models are established. Further, basic design procedure is described. The numbers of phases and poles have important influence on the selection of structure. These effects, along with sizing of machine envelope and internal dimensions, make the machine design an insight-intensive effort. Effect of pole arcs and air-gap length on the production of torque and radial force are analyzed in detail. Mechanical design factors such as hoop stress and first critical speed are also considered. Based on the above analysis, the characteristics of the proposed BLSRM are analyzed. A prototype motor is designed and manufactured. The validity of the proposed structure is verified by the experimental results.

The Stable Position Control of Hybrid type Linear Pulse Motor by Digital PI Control (디지털 PI 제어에 의한 HLPM의 안정된 위치제어)

  • Youn, Shin-Yong;Baek, Soo-Hyun;Kim, Yong;Kim, Cherl-Jin;Maeng, In-Jae
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.10
    • /
    • pp.637-645
    • /
    • 2000
  • This study was represented the improvement of the flexible position control for linear motion of hybrid type linear pulse motor(HLPM). The driving method used a minute 125 microstep drive instead of full step drive method. The digital control method was applied to the PI control for more stable position control, at this time the PI control parameters have gained by a Ziegler-Nichols turning method. The loop transfer function of control system was combined with both motor transfer function and digital PI control equation. Such, the proper for digital PI control system is verified to through the simulation and experimental result of the stability step response and bode plot with proper gain and phase margin.

  • PDF

A Hybrid DTC-DSC Drive for High Performance Induction Motor Control

  • Jidin, Auzani;Idris, Nik Rumzi Nik;Yatim, Abdul Halim Mohamed;Sutikno, Tole;Elbuluk, Malik E.
    • Journal of Power Electronics
    • /
    • v.11 no.5
    • /
    • pp.704-712
    • /
    • 2011
  • This paper describes a hybrid induction motor drive system incorporating DTC-hysteresis and Direct Self Control (DSC) schemes to achieve excellent dynamic performance. The control scheme is switched from a circular to a hexagonal flux locus whenever a dynamic condition is encountered. On the other hand, when the motor operates under steady state conditions, a circular flux locus is used. Without major modifications to the simple structure of a basic DTC, hexagonal flux locus operation is established by modifying the flux error status, before it is fed to the look-up table. The feasibility of the proposed hybrid scheme to achieve excellent control performance is verified by experimental results.

A new drive circuit for the Bifilar-Wound Hybrid Step Motor considering mutual inductance (Bifilar-Wound Hybrid Step Motor의 상호 인덕턴스를 고려한 구동회로)

  • Kim, Yoon-Ho;Yoon, Byung-Do;Lee, Baek-Hang
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.880-882
    • /
    • 1993
  • In this paper, a drive circuit for a bifilar-wound hybrid step motor considering mutual inductance and back-emf is investigated. For the suppression circuit, the varition of average torque and torque ripple due to the effect of mutual inductance and back-emf is presented. In order to improve the performance of the motor, a new control scheme is also proposed.

  • PDF

Hybrid method for design of IPM type BLDC Motor to reduce cogging torque (IPM type BLDC 전동기의 코깅토크 저감을 위한 Hybrid 최적설계)

  • Hwang, Hyu-Yun;Rhee, Sang-Bong;Kwon, Byung-Il
    • Proceedings of the KIEE Conference
    • /
    • 2007.04c
    • /
    • pp.74-76
    • /
    • 2007
  • A hybrid optimization method is proposed for cogging torque reducing in BLDC motor. The proposed hybrid optimization method comprises a response surface method (RSM) and a gradient search method (GSM). The RSM is effective and global method in optimization problem but having large approximation error. The GSM is accurate and fast search method for optimal solution but having local behavior. To reduce approximation error and computation time a hybrid method (RSM+GSM) is proposed method. To illustrate the effectiveness of the proposed method, a comparison between conventional RSM and the proposed hybrid method is made. A simulation results verify that the hybrid method can achieve favorable design performance.

  • PDF

Levitation and Thrust Forces Analysis of Hybrid-Excited Linear Synchronous Motor for Magnetically Levitated Vehicle

  • Cho, Han-Wook;Kim, Chang-Hyun;Han, Hyung-Suk;Lee, Jong-Min
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.4
    • /
    • pp.564-569
    • /
    • 2012
  • This paper proposes a hybrid-excited linear synchronous motor (LSM) that has potential applications in a magnetically levitated vehicle. The levitation and thrust force characteristics of the LSM are investigated by means of three-dimensional (3-D) numerical electromagnetic FEM calculations and experimental verification. Compared to a conventional LSM with electromagnets, a hybrid-excited LSM can improve levitation force/weight ratios, and reduce the power consumption of the vehicle. Because the two-dimensional (2-D) FE analysis model describes only the center section of the physical device, it cannot express the complex behavior of leakage flux, which this study is able to predicts along with levitation and thrust force characteristics by 3-D FEM calculations. A static force tester for a hybrid-excited LSM has been manufactured and tested in order to verify these predictions. The experimental results confirm the validity of the 3-D FEM calculation scheme for the description of a hybrid-excited LSM.

Modeling and Characteristic Analysis of HEV Li-ion Battery Using Recursive Least Square Estimation (최소 자승법을 이용한 하이브리드용 리튬이온 배터리 모델링 및 특성분석)

  • Kim, Ho-Gi;Heo, Sang-Jin;Kang, Gu-Bae
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.1
    • /
    • pp.130-136
    • /
    • 2009
  • A lumped parameter model of Li-ion battery in hybrid electric vehicle(HEV) is constructed and system parameters are identified by using recursive least square estimation for different C-rates, SOCs and temperatures. The system characteristics of pole and zero in frequency domain are analyzed with the parameters obtained from different conditions. The parameterized model of Li-ion battery indicates highly dependant of temperatures. The system pole and internal resistance changes 6.6 and 18 times at $-20^{\circ}C$, comparing with those at $25^{\circ}C$, respectively. These results will be utilized on constructing model-based state observer or an on-line identification and an adaptation of the model parameters in battery management systems for hybrid electric vehicle applications.

Analysis and Application of a Hybrid Motor Structure Convenient to Modify the Magnet and Reluctance Torques on the Rotor

  • Beser, Esra Kandemir;Camur, Sabri;Arifoglu, Birol;Beser, Ersoy
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.3
    • /
    • pp.349-357
    • /
    • 2012
  • This paper presents a hybrid motor prototype convenient to modify the magnet and reluctance torques. The rotor of the prototype consists of magnet and reluctance parts, so the generated torque includes both magnet and reluctance torques. A considerable feature of the motor is that the ratio of the magnet and reluctance parts can be modified on the rotor and the rotor hybridization ratio can be varied. Another important point is the mechanical angle between the parts changed by means of the suitable construction of the parts on the rotor shaft. Finite element (FE) analysis was carried out for the proposed motor and static torque measurements were realized. The FE results were compared with the experimental results. Average torque and maximum torque values were obtained and three dimensional 3-D graphs were formed by using the experimental data. It is possible to make different combinations by changing the parts and the angle between the parts due to the proposed motor. So the magnet and reluctance torques are modified and different combinations give different torque behavior.

Characteristics Analysis of Suspending Force for Hybrid Stator Bearingless SRM

  • Ahn, Jin-Woo;Lee, Dong-Hee
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.208-214
    • /
    • 2011
  • In this paper, a characteristics analysis and calculation of the suspending force of a novel bearingless switched reluctance motor (BLSRM) with hybrid stator poles is proposed. The operating principle and permeance are calculated to find an appropriate control scheme for a proposed motor. Furthermore, a mathematical model for suspending force is derived. Finite element analysis is also employed to compare with the expressions for suspending force. Finally, the validity of the structure and the mathematical model is verified by simulation results.