• Title/Summary/Keyword: Hybrid Machining Center

Search Result 22, Processing Time 0.029 seconds

Characteristics of Micro EDM using Wire Electrical Discharge Grinding for Al2O3/CNTs Hybrid Materials (Al2O3/CNTs 하이브리드소재의 와이어 방전연삭을 이용한 마이크로 방전가공 특성)

  • Tak, Hyun-Seok;Kim, Jong-Hun;Lim, Han-Suk;Lee, Choon-Tae;Jeong, Young-Keun;Kang, Myung-Chang
    • Journal of Powder Materials
    • /
    • v.17 no.4
    • /
    • pp.319-325
    • /
    • 2010
  • Electrical discharge machining (EDM) is an attractive machining technique but it requires electrically conductive ceramic materials. In this study, Alumina matrix composites reinforced with CNTs were fabricated through CNT purification, mixing, compaction and spark plasma sintering (SPS) processes. $Al_2O_3$ nanocomposites with the different CNT concentrations were synthesized. The mechanical and electrical characteristics of $Al_2O_3$/CNTs composites were examined in order to apply the materials to the EDM process. In addition, micro-EDM using wire electrical discharge grinding (WEDG) was conducted under the various EDM parameters to investigate the machining characteristics of machined hole by Field Emission Scanning Electron Microscope (FE-SEM). The results show that $Al_2O_3$/CNTs 10%Vol. was more suitable than the other materials because high conductivity and large discharge energy caused violent sparks resulting in bad machining accuracy and surface quality.

Development of Vibration Assisted Hybrid Femtosecond Laser Ultra-precision Machining System and Cu-Zn alloy Application (진동자를 이용한 하이브리드 극초단 펄스 레이저 초정밀가공시스템 개발 및 Cu-Zn합금 응용)

  • Choi, Won-Suk;Yoon, Ji-Wook;Cho, Sung-Hak;Kang, Myung-Chang
    • Journal of Powder Materials
    • /
    • v.20 no.4
    • /
    • pp.308-312
    • /
    • 2013
  • In this paper, we describe experiment results using a vibration assisted hybrid femtosecond laser (${\lambda}$:795 nm) ultra-precision machining system. The hybrid system we have developed is possible that optical focal point of the femtosecond laser constantly and frequently within the range of PZT(piezoactuator) vibrator working distance. Using the hybrid system, We have experimented on brass and studied about differences of result of hole aspect ratio compare to general experiment setup of femtosecond laser system. Aspect ratio of a micro hole on brass is increased as 54% with 100 Hz vibration frequency and surface roughness of the side wall also improved compare to non-vibration.

Comparison of Machinability Between PCD Tool and SCD Tool for Large Area Mirror Surface Machining Using Multi-tool by Planer (평삭공정에서 경면가공을 위한 단결정 및 다결정 다이아몬드 다중공구의 가공성 평가)

  • Kim, Chang-Eui;Choi, Hwan-Jin;Jeon, Eun-Chae;Je, Tae-Jin;Kang, Myung-Chang
    • Journal of Powder Materials
    • /
    • v.20 no.4
    • /
    • pp.297-301
    • /
    • 2013
  • Mirror surface machining for large area flattening in the display field has a problem such as a tool wear and a increase in machining time due to large area machining. It should be studied to decrease machining time and tool wear. In this paper, multi-tool machining method using a PCD tool and a SCD tool was applied in order to decrease machining time and tool wear. Machining characteristics (cutting force, machined surface and surface roughness) of PCD tool and SCD tool were evaluated in order to apply PCD tool to flattening machining. Based on basic experiments, the PCD/SCD multi-tool method and the SCD single-tool method were compared through surface roughness and machining time for appllying large area mold machining.

Shape Optimization for Lightweight of the Metal 3D Printing Based Hybrid Machining Center (금속 적층 기반 하이브리드 머시닝센터의 경량화를 위한 형상 최적화에 관한 연구)

  • Jeong, Won-Young;Jeong, Ho-In;Lee, Choon-Man
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.2
    • /
    • pp.80-85
    • /
    • 2021
  • In the fourth industrial revolution, the demand for metal three-dimensional (3D) printing technology is rapidly increasing. Metal 3D printing is an efficient method for manufacturing products because the method reduces material waste compared to subtractive manufacturing. In addition, products with complex shapes, such as turbine blades, can be easily produced using metal 3D printing because the method offers a high degree of freedom. However, due to the long production time of metal 3D printing, mass production is impossible, and post-processing is necessary due to its low precision. Therefore, it is necessary to develop a new hybrid process that can efficiently process metals and to develop a metal 3D-printing-based hybrid processing system technology to secure high processing precision and manufacture complex shapes. In this study, the structural stability of a metal 3D printer based hybrid machining center was analyzed through structural analysis before its development. In addition, we proposed a design modification that can reduce the weight and increase the stiffness of the hybrid machining center by performing shape lightning based on the structural analysis results.

Regrinding Effect of Flat End-Mill Tool for Recycling of Tungsten Carbide (WC-Co) Material (초경소재 재활용을 위한 플랫 엔드밀공구의 재연삭 효과)

  • Kang, Myung-Chang;Kim, Min-Wook;Kwon, Dong-Hee;Park, In-Duck;Jeong, Young-Keun
    • Korean Journal of Materials Research
    • /
    • v.18 no.12
    • /
    • pp.635-639
    • /
    • 2008
  • In this paper, experimental studies of the regrinding of tungsten carbide (WC-Co) tools for high-speed machining were conducted. Regrinding and a subsequent evaluation test were carried out for a flat endmill tool with diameters of 10 mm and 3 mm using a CNC five-axis tool grinder and a CNC three-axis machining center. Tool wear on the two types of endmill tools increased as the cutting length increased, and the tool wear was not influenced by the regrinding state. In case of the micro endmill with a tool diameter of 3 mm, the effective regrinding time was determined for a flank wear threshold of 0.3 mm considering the tool life according to cutting length. The tool lives of the 10 mm and 3 mm endmill tools were increased by 80% and 72%, respectively. This conclusion proves the Feasibility of the recycling of tungsten carbide materials in the high-speed machining of high-hardened materials for industrial applications.

Development of Intellingent Design Support System for Machine Tools (지능형 공작기계 설계 지원 시스템 개발)

  • 차주헌;김종호;박면웅;박지형
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.1022-1027
    • /
    • 1995
  • We present a framework of an intelligent design support system for embodiment design of machine tools which can support efficiently and systematically the machine design by utilizing design knowledge such as objects(part), know-how, public, evaluation, and procedures. The design knowledge of machining center has been accumulated through interview with design experts of machine tool companies. The processes of embodiment design of machining center are established. We also introduce a hybrid knowledge representation so that the systm can easily deal with various and complicated design knowledge. The intelligent design system is being developed on the basis of object-oriented programming, and all parts of a design object, machining center, are also classified by the object-oriented modeling. For the demonstration of effectiveness of the suggested system, a structural design system for machine tools is implemented.

  • PDF