• Title/Summary/Keyword: Hybrid Lubrication

Search Result 16, Processing Time 0.019 seconds

Research on the Lubrication Characteristics of Driving Modules (구동 모듈 감속기 윤활 특성에 관한 연구)

  • Kim, EunKyum;Kim, HyunChan;Park, JunYoung
    • Tribology and Lubricants
    • /
    • v.38 no.2
    • /
    • pp.70-72
    • /
    • 2022
  • In this study, we report on a power system developed as a decelerator for a driving module in an electric vehicle. The system is to be mounted in a limited space. The research focus was on development of miniaturization, light weight, and high power density. In particular, we aimed to minimize the layout of existing external components as integrated or built-in, and to maximize the power density by applying optimal cooling technology to increased requirements for developing modular power systems applicable to various OEM models. South Korean automakers ranked fourth in global electric-vehicle sales in 2020, but domestic sales are relatively slow. Despite government's expansion in subsidies for eco-friendly cars, consumers are delaying purchases after 2021 considering the cost-effectiveness of electric vehicles. In major European markets, the demand for electric vehicles exceeded the demand for diesel cars, and sales of hybrid cars, which used to represent eco-friendly cars, are slowing down as Toyota, started selling electric vehicles. In this study, the internal lubrication characteristics of a decelerator installed in an electric vehicle were analyzed in terms of the deceleration time while driving. By selecting the proper oil and oil viscosity, it was confirmed that there is no problem in lubricating the bearings and gears of the decelerator.

Tribology and Phase Evolution of Cr-Mo-N Coatings with Different Interlayer Condition (중간층 조건에 따른 Cr-Mo-N 막의 상형성 및 마찰마모 거동 연구)

  • Yang, Young-Hwan;Lyo, In-Woong;Park, Sang-Jin;Im, Dae-Sun;Oh, Yoon-Suk
    • Journal of the Korean institute of surface engineering
    • /
    • v.44 no.6
    • /
    • pp.269-276
    • /
    • 2011
  • Phase evolution and tribological behavior of Cr-Mo-N multi compositional films with different interlayer were investigated. The films were deposited by hybrid PVD (Physical Vapor Deposition) system consisted of dc unbalanced magnetron (UBM) sputtering and arc ion plating (AIP) sources. A pure molybdenum (Mo) was used as sputtering target and also a pure Cr was used as AIP target to form the Cr-Mo-N films. Various growth planes were found, no textured surface, in all of the multi composition films. Maximum value of microhardness was measured in Cr-Mo-N film with Mo interlayer as 29 GPa. Composition film was mainly showed the aspect of the adhesive wear than CrN film. The friction coefficient was decreased from 0.6 for pure CrN coating to 0.35 for Cr-Mo-N film with Mo interlayer. This result may come from the formation of metal oxide tribo-layer which is known as solid lubricant during the wear test.

A Study on the Characteristics of Ceramic Ball Bearing (세라믹 볼베어링의 특성해석에 관한 연구)

  • 김완두;한동철
    • Tribology and Lubricants
    • /
    • v.8 no.2
    • /
    • pp.64-72
    • /
    • 1992
  • The recent trends of rotating machinery demand high speed and high temperature operation, and the bearing with new material is required to be developed. Ceramic, especially silicon nitride, have been receiving attention as alternative material to conventional bearing steel. Ceramic ball bearing offers major performance advantages over steel bearing, for instance, high speed, maginal lubrication, high temperature, improved corrosion resistance and nonmagnetic capabilities etc.. In this paper, the mechanical characteristics of ceramic ball bearing (hybrid ceramic bearing and all ceramic bearing) were investigated, and the characteristics of ceramic bearing were compared with that of steel bearing. Deep groove ball bearing 6208 was taken the object of analysis. The main results of analysis were followings: the radial stiffness of hybrid and all ceramic bearing were 112% and 130% that of steel bearing, and the axial stiffness of all ceramic bearing was 110% that of steel bearing. According as rotating speed was up, the ball load, the contact angle, the contact stress and the spin-to-roll ratio between ball and raceway of ceramic bearing were far smaller than these of steel bearing. And there was not a significant difference between the minimum film thickness of ceramic bearing and steel bearing. It is expected that this research is contributed to enhanced fundamental technology for the practical applications of ceramic ball bearing.

A study on the drawing of spline shaped section with non-rotary symmetry (비회전 대칭 단면 형상의 스플라인 인발 공정에 관한 연구)

  • Choi, B.H.;Han, S.S.;Han, C.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.450-453
    • /
    • 2008
  • During the drawing of reentrant section like a spline, the unfilled in the corner of dies or the bended product emerges from the large reduction of area, the complex shaped sections and other nonuniform properties in material and lubrication conditions. In this study, the drawing of the spline section with the non-rotary symmetry from a circular aluminum billet has been analyzed by using commercial code DEFORM-3D. A new die construction method preventing the spline from the drawback of bending and the unfilled defect has been suggested and verified through the analysis using centroid shift method and the hybrid construction between converged and diverged profile.

  • PDF

Wear Properties of Hybrid Metal Matrix Composites (하이브리드 금속복합재료의 마모특성)

  • 부후이후이;송정일
    • Composites Research
    • /
    • v.16 no.3
    • /
    • pp.75-84
    • /
    • 2003
  • The purpose of this study is to investigate the wear properties of Saffil/Al, Saffil/A12O3/Al and Saffil/SiC/Al hybrid metal matrix composites fabricated by squeeze casting method. Wear tests were done on a pin-on-disk friction and wear tester under both dry and lubricated conditions. The wear properties of the three composites were evaluated in many respects. The effects of Saffil fibers, $\textrm{Al}_2\textrm{O}_3$ particles and SiC particles on the wear behavior of the composites were investigated. Wear mechanisms were analyzed by observing the worn surfaces of the composites. The variation of coefficient of friction(COF) during the wear process was recorded by using a computer. Under dry sliding condition, Saffil/SiC/Al showed the best wear resistance under high temperature and high load, while the wear resistances of Saffil/Al and Saffi1/$\textrm{Al}_2\textrm{O}_3$/Al were very similar. Under dry sliding condition, the dominant wear mechanism was abrasive wear under mild load and room temperature, and the dominant wear mechanism changed to adhesive wear as load or temperature increased. Molten wear occurred at high temperature. Compared with the dry sliding condition, all three composites showed excellent wear resistance when lubricated by liquid paraffin. Under lubricated condition, Saffil/Al showed the best wear resistance among them, and its COF value was the smallest. The dominant wear mechanism of the composites under lubricated condition was microploughing, but microcracking also occurred to them to different extents.

A Study on the Corrosion Prevention of the Integral Series Generator for Military Vehicles (군용차량용 엔진일체형 직렬 발전기 부식 방지에 관한 연구)

  • Kang, Tae-Woo;Kim, Seong-Gon;Shin, Cheol-Ho;Lee, Kye-Sub
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.6
    • /
    • pp.74-79
    • /
    • 2019
  • The military vehicle produces electric power through an engine-integrated serial hybrid generator that is connected to the engine and does not have a separate generator installation space. However, depending on the mechanical characteristics of the connection between the generator and the engine, iron oxide for internal rusting and lubrication grew scattered. The iron oxide is adhered to the starter to deteriorate the starting performance, and there is a problem that the noise of the leg due to wear of the gear is increased. To solve this problem, the connection spline material and the surface treatment of the engine were improved and the shape was changed to a grease sealing type to prevent the generation of iron oxide inside. As the shape of the generator connector composing the shafting system was changed, the integrity of the structure was confirmed through the torsional endurance test. In addition, through the actual vehicle load test, it was verified that no corrosion occurred during the target life span without internal corrosion. It was confirmed that the anti-scattering structure of the grease effectively suppresses the generation of iron oxide, thereby reducing the noise generated from the generator. In this paper, we propose a fundamental solution to the degradation of the starter and the noise generation by preventing the back corrosion caused by the serial hybrid generator installed between the engine and the transmission.