협업 필터링(Collaborative Filtering)은 유용성과 정교성 면에서 가장 성공적인 추천 알고리즘으로 평가받으며 산업계나 학계에서 많이 활용 및 연구되고 있지만, 기본적으로 사용자들이 평가한 점수에만 기반하여 추천결과를 생성하는 한계점이 있다. 이에 본 연구는 사용자가 상품을 구매할 때 자신이 신뢰하는 타인의 추천을 더 적극적으로 수용할 것이라는 점에 착안하여, 사용자의 평점 외에 사용자 간 신뢰관계를 소셜네트워크분석으로 분석한 결과를 추가로 반영하는 추천 알고리즘들을 제안하였다. 구체적으로 본 연구에서는 소셜네트워크분석에서 네트워크 내의 중심적 위치를 나타내는 척도인 내향 및 외향 중심성을 활용하여 사용자 간 유사도를 산출하는 알고리즘들과 사용자 신뢰 네트워크를 탐색하여 추천 대상이 되는 사용자가 직접 간접적으로 신뢰하는 사용자의 평가점수를 보다 높게 반영하는 알고리즘을 제안한 뒤 그 성능을 비교해 보았다. 실제 데이터에 적용하여 분석한 결과, 사용자 신뢰 네트워크의 내향 중심성 지수를 조건 없이 적용한 경우에는 오히려 정확도의 감소만을 야기하는 것으로 나타났고, 일정 임계치 이상의 외향 중심성을 갖는 사용자에 한해 내향 중심성 지수를 고려한 추천 알고리즘은 전통적인 협업 필터링에 비해 약간의 정확도 개선이 이루어짐을 확인할 수 있었다. 아울러, 사용자 신뢰 네트워크를 기반으로 탐색하는 알고리즘이 가장 우수한 성능을 보이는 것을 알 수 있었으며, 전통적인 협업 필터링과 비교해서도 통계적으로 유의한 수준의 정확도의 개선이 이루어짐을 확인할 수 있었다.
Support vector machines(SVM)은 비교적 최근에 등장한 데이터마이닝 기법이지만, 재무, CRM 등의 경영학 분야에서 많이 연구되고 있다. SVM은 인공신경망과 필적할 만큼의 예측 정확도를 보이는 사례가 많았지만, 암상자로 불리는 인공신경망 모형에 비해 구축된 예측모형의 구조를 이해하기 쉽고, 인공신경망에 비해 과도적합의 가능성이 적어서 적은 수의 데이터에서도 적용 가능하다는 장점을 가지고 있다. 하지만, 일반적인 SVM을 이용하려면, 인공신경망과 마찬가지로 여러 가지 설계요소들을 설계자가 선택하여야 하기 때문에 임의성이 높고, 국부 최적해에 수렴할 가능성도 크다. 또한, 많은 수의 데이터가 존재하는 경우에는 데이터를 분석하고 이용하는데 시간이 소요되고, 종종 잡음이 심한 데이터가 포함된 경우에는 기대하는 수준의 예측성과를 얻지 못할 가능성이 있다. 본 연구에서는 일반적인 SVM의 장점을 그대로 유지하면서, 전술한 두 가지 단점을 보완한 새로운 SVM 모형을 제안한다. 본 연구에서 제안하는 모형은 사례선택기법을 일반적인 SVM에 융합한 것으로 대용량의 데이터에서 예측에 불필요한 데이터를 선별적으로 제거하여 예측의 정확도와 속도를 제고할 수 있는 방법이다. 본 연구에서는 잡음이 많고 예측이 어려운 것으로 알려진 재무 데이터를 활용하여 제안 모형의 유용성을 확인하였다.
소셜 네트워크는 사용자들의 공통된 관심사, 경험, 그리고 일상 생활들을 함께 공유하기 위해 소셜 네트워크 상 사람들을 서로 연결시켜주는 거대한 커뮤니케이션 플랫폼이다. 소셜 네트워크상의 사용자들은 포스팅, 댓글, 인스턴스 메시지, 게임, 소셜 이벤트 외에도 다양한 애플리케이션을 통해 다른 사용자들과 소통하고 개인 정보 관리하는데 많은 시간을 소비한다. 소셜 네트워크 상의 풍부한 사용자 정보는 추천시스템이 추천 성능을 향상시키기 위해 필요한 큰 잠재력이 되었다. 대부분의 사용자들은 어떤 상품을 구매하기 전 가까운 관계이거나 같은 성향을 가진 사람들의 의견을 반영하여 의사 결정을 하게 된다. 그러므로 소셜 네트워크에서의 사용자 관계는 추천시스템을 위한 사용자 선호도 예측을 효율적으로 높이는데 중요한 요소라 할 수 있다. 일부 연구자들은 소셜 네트워크에서의 사용자와 다른 사용자들 사이의 상호작용 즉, 소셜 관계(social relationship)와 같은 소셜 데이터가 추천시스템에서 추천의 질에 어떠한 영향을 미치는가를 연구하고 있다. 추천시스템은 아마존, 이베이, Last.fm과 같은 큰 규모의 전자상거래 사이트 또한 채택하여 사용되는 시스템으로, 추천시스템을 위한 방법으로는 협업적 여과 방법과 내용 기반 여과 방법이 있다. 협업적 여과 방법은 사용자들의 선호도 학습에 의해 사용자가 아직 평가하지 않은 아이템 중 선호할 수 있는 아이템을 정확하게 제안하기 위한 추천시스템 방법 중 하나이다. 협업적 여과는 사용자들의 데이터에 초점을 맞춘 방법으로 유사한 배경과 선호도를 가지는 사용자들로부터 정보를 수집하여 사용자들의 선호도 예측을 자동으로 발생시킨다. 특히 협업적 여과는 근접한 이웃 사용자들에 의해서 목적 사용자가 선호할 수 있는 아이템을 제시하는 것으로 유사한 이웃 사용자를 찾는 것이 중요하다. 좋은 이웃 사용자 발견은 사용자와 아이템을 고려하는 방법이 일반적이다. 각 사용자는 아이템 즉, 영화, 상품, 책 등에 자신의 선호도를 나타내기 위하여 평가 값을 입력하고, 시스템은 이를 바탕으로 사용자-평가 행렬을 구축한다. 이 사용자-평가 행렬은 목적 사용자와 유사하게 아이템을 평가한 사용자 그룹을 찾기 위한 것으로, 목적 사용자가 아직 평가하지 않은 아이템에 대하여 사용자-평가 매트릭스를 통해 그 평가 값을 예측한다. 현재 이 협업적 여과 방법은 전자상거래와 정보 검색에서 적용되어 개인화 시스템에 효율적으로 사용되고 있다. 하지만 초기 사용자 문제, 데이터 희박성 문제와 확장성 그리고 예측 정확도 향상 등 해결해야 할 과제가 여전히 남아 있다. 이러한 문제들을 해소하기 위해 많은 연구자들은 하이브리드, 신뢰기반, 소셜 네트워크 기반 협업적 여과와 같은 다양한 방법을 제안하였다. 본 논문에서는 전통적인 협업적 여과 방식의 예측 정확도와 추천 성능을 향상시키기 위해 소셜 네트워크에 존재하는 소셜 관계를 이용한 협업적 여과 시스템을 제안한다. 소셜 관계는 소셜 네트워크 서비스 중 하나인 페이스북 사용자들이 남긴 포스팅과 사용자의 소셜 네트워크 친구와 의견 교류 중 남긴 코멘트와 같은 사용자 행동을 기반으로 정의된다. 소셜 관계를 구축하기 위해 소셜 네트워크 사용자의 포스팅과 댓글을 추출하고, 추출된 텍스트에 불용어 및 특수 기호 제거와 스테밍 등 전처리를 수행하였다. 특징 벡터는 TF-IDF를 이용하여 전처리된 텍스트에 나타난 각 단어에 대한 특징 점수를 계산함으로써 구축된다. 본 논문에서 이웃 사용자를 결정하기 위해 사용되는 사용자 간 유사도는 특징 벡터를 이용한 사용자 행동 유사도와 사용자의 영화 평가를 기반으로 한 전통적 방법의 유사도를 결합하여 계산된다. 제안하는 시스템은 목표 사용자와 제안한 방법을 통해 결정된 이웃 사용자 집단을 기반으로 목표 사용자가 평가하지 않은 아이템에 대한 선호도를 예측하고 Top-N 아이템을 선별하여 사용자에게 아이템을 추천하게 된다. 본 논문에서 제안하는 방법을 확인하고 평가하기 위하여 IMDB에서 제공하는 영화 정보 기반으로 영화 평가 시스템을 구축하였다. 예측 정확도를 평가하기 위해 MAE 값을 이용하여 제안하는 알고리즘이 얼마나 정확한 추천을 수행하는지에 대한 예측 정확도를 측정하였다. 그리고 정확도, 재현율 및 F1값 등을 활용하여 시스템의 성능을 평가하였으며, 시스템의 추천 품질은 커버리지를 이용하여 평가되었다. 실험 결과로부터 본 논문에서 제안한 시스템이 보다 더 정확하고 좋은 성능으로 사용자에게 아이템을 추천하는 것을 볼 수 있었다. 특히 소셜 네트워크에서 사용자 행동을 기반으로 한 소셜 관계를 이용함으로써 추천 정확도를 6% 향상시킴을 보였다. 또한 벤치마크 알고리즘과의 성능비교 실험을 통해 7% 향상된 추천 성능의 결과를 보여준다. 그러므로 사용자의 행동으로부터 관찰된 소셜 관계를 CF방법과 결합한 제안한 방법이 정확한 추천시스템을 위해 유용하며, 추천시스템의 성능과 품질을 향상시킬 수 있음을 알 수 있다.
본 연구는 만성질환 중의 하나인 고지혈증 유병을 예측하는 분류모형을 개발하고자 한다. 이를 위해 SVM과 meta-learning 알고리즘을 이용하여 성과를 비교하였다. 또한 각 알고리즘에서 성과를 향상시키기 위해 변수선정 방법을 통해 유의한 변수만을 선정하여 투입하여 분석하였고 이 결과 역시 각각 성과를 비교하였다. 본 연구목적을 달성하기 위해 한국의료패널 2012년 자료를 이용하였고, 변수 선정을 위해 세 가지 방법을 사용하였다. 먼저 단계적 회귀분석(stepwise regression)을 실시하였다. 둘째, 의사결정나무(decision tree) 알고리즘을 사용하였다. 마지막으로 유전자 알고리즘을 사용하여 변수를 선정하였다. 한편, 이렇게 선정된 변수를 기준으로 SVM, meta-learning 알고리즘 등을 이용하여 고지혈증 환자분류 예측모형을 비교하였고, TP rate, precision 등을 사용하여 분류 성과를 비교분석하였다. 이에 대한 분석결과는 다음과 같다. 첫째, 모든 변수를 투입하여 분류한 결과 SVM의 정확도는 88.4%, 인공신경망의 정확도는 86.7%로 SVM의 정확도가 좀 더 높았다. 둘째, stepwise를 통해 선정된 변수만을 투입하여 분류한 결과 전체 변수를 투입하였을 때보다 각각 정확도가 약간 높았다. 셋째, 의사결정나무에 의해 선정된 변수 3개만을 투입하였을 때 인공신경망의 정확도가 SVM보다 높았다. 유전자 알고리즘을 통해 선정된 변수를 투입하여 분류한 결과 SVM은 88.5%, 인공신경망은 87.9%의 분류 정확도를 보여 주었다. 마지막으로, 본 연구에서 제안하는 meta-learning 알고리즘인 스태킹(stacking)을 적용한 결과로서, SVM과 MLP의 예측결과를 메타 분류기인 SVM의 입력변수로 사용하여 예측한 결과, 고지혈증 분류 정확도가 meta-learning 알고리즘 중에서는 가장 높은 것으로 나타났다.
개인화 추천에서 많이 사용되는 협업 필터링은 고객들의 구매이력을 기반으로 유사고객을 찾아 상품을 추천할 수 있는 매우 유용한 기법으로 인식되고 있다. 그러나, 전통적인 협업 필터링 기법은 사용자 간에 직접적인 연결과 공통적인 특징을 기반으로 유사도를 계산하는 방식으로 인해 신규 고객 혹은 상품에 대해 유사도를 계산하기 힘들다는 문제가 제기되어 왔다. 이를 극복하기 위하여, 다른 기법을 함께 사용하는 하이브리드 기법이 고안되기도 하였다. 이런 노력의 하나로서, 사회연결망의 구조적 특성을 적용하여 이런 문제를 해결하려는 시도가 있었다. 이는, 직접적으로 유사성을 찾기 힘든 사용자 간에도 둘 사이에 놓인 유사한 사용자 또는 사용자들을 통해 유추해내는 방식으로 상호 간의 유사성을 계산하는 방식을 적용한 것이다. 즉, 구매 데이터를 기반으로 사용자의 네트워크를 생성하고 이 네트워크 내에서 두 사용자를 간접적으로 이어주는 네트워크의 특성을 기반으로 둘 사이의 유사도를 계산하는 것이다. 이렇게 얻은 유사도는 추천대상 고객이 상품의 추천에 대한 수락여부를 결정하는 척도로 활용될 수 있다. 서로 다른 중심성 척도는 추천성과에 미치는 영향이 서로 다를 수 있다는 점에서 중요한 의미를 갖는다 할 수 있다. 이런 유사도의 계산을 위해서 네트워크의 중심성을 활용할 수 있다. 본 연구에서는 여기서 더 나아가 이런 중심성이 추천성과에 미치는 영향이 추천 알고리즘에 따라서도 다를 수 있다는 데에서 주목하여 수행되었다. 또한, 이런 네트워크 분석을 활용한 추천기법은 신규 고객 혹은 상품뿐만 아니라 전체 고객 혹은 상품으로 그 대상을 넓히더라도 추천 성능을 높이는 데 기여할 것을 기대할 수 있을 것이다. 이런 관점에서 본 연구는 네트워크 모형에서 연결선이 생성되는 것을 이진 분류의 문제로 보고, 추천 모형에 적용할 분류 기법으로 의사결정나무, K-최근접이웃법, 로지스틱 회귀분석, 인공신경망, 서포트 벡터 머신을 선택하고, 온라인 쇼핑몰에서 4년2개월간 수집된 구매 데이터로 실험을 진행하였다. 사회연결망에서 측정된 중심성 척도를 각 분류 기법에 적용하여 생성한 모형을 비교 실험한 결과, 각 모형 별로 중심성 척도의 추천성공률이 서로 다르게 나타남을 확인할 수 있었다.
인터넷의 발달을 통해 지속적으로 인스턴트 커뮤니케이션이 발달해왔다. 인스턴트 커뮤니케이션에서 가장 대표적인 것이 메신저 애플리케이션이다. 메신저 애플리케이션에서 이모티콘은 송신자의 감정 전달을 보완하기 위해 활용됐다. 메신저 애플리케이션 송신자의 감정 전달에 약한 모습을 보이는데 그 이유는 면대면 커뮤니케이션이 아니기 때문이다. 이모티콘은 과거 화자의 기분 상태를 나타내는 기호로만 사용됐다. 그러나 현재는 이모티콘은 감정 전달 뿐만 아니라 개인의 특성과 개성을 나타내고 싶어 하는 소비자의 심리를 반영하는 형태로 발전해가고 있다. 이모티콘의 사용 환경이 개선되었고, 이모티콘 자체가 발전함으로써 이모티콘 자체에 대한 관심도는 증가하였다. 대표적인 예로 카카오톡, 라인, 애플 등에서 서비스를 진행하고 있으며, 관련 컨텐츠 상품의 매출도 지속적으로 증가할 것으로 전망하고 있다. 이모티콘 자체의 관심도 증가와 관련 사업의 성장세에도 불구하고 현재 적절한 이모티콘 추천 시스템이 부재하다. 국내 점유율 90% 이상의 메신저 애플리케이션인 카카오톡조차 단순히 인기 순이나 최근 순, 혹은 간략한 카테고리 별로 분류한 정도이다. 소비자들은 원하는 이모티콘을 찾기 위해서 스크롤을 계속해서 내려야 하는 불편함이 있으며, 본인이 원하는 감성의 이모티콘을 찾기 어렵다. 소비자들이 편의성 향상과 기업의 이모티콘 관련 사업의 판매 매출 증가를 위해 소비자가 원하는 이모티콘을 추천해줄 수 있는 이모티콘 추천 시스템이 필요하다. 적절한 이모티콘을 추천하기 위해서 소비자가 이모티콘을 보고 느낀 감성에 대해 정량화할 필요성이 있다. 정량화를 통해 소비자가 원하는 이모티콘 셋이 가진 특징과 감성에 대해 분석할 수 있으며, 분석 결과를 토대로 소비자에게 이모티콘을 추천할 수 있다. 이모티콘은 메타데이터화의 방법으로 정량화가 가능하다. 메타데이터화 방법은 빅데이터 시대에 비정형, 반정형 데이터에 대해서 의미를 추출하기 위해 데이터를 구조화 혹은 조직화하는 작업이다. 비정형 데이터인 이모티콘을 메타데이터화를 통해 구조화한다면, 쉽게 소비자가 원하는 감성 형태로 분류할 수 있을 것으로 생각한다. 정확한 감성을 추출하기 위해 감정과 관련된 선행 연구를 통해 7개의 공통 감성 형용사와 한국어에서만 나타나는 은유 혹은 표현적 특징들을 반영하기 위해 하위 세부 표현들까지 고려했다. 이모티콘의 가장 큰 특징인 캐릭터를 기반으로 "표상", "형상", "색상"의 범주에서 세부 하위 감성들을 수집했다. 정확도 높은 추천 시스템을 설계하기 위해 감성 지표만이 아니라 객관적 지표도 고려하였다. 메타데이터화 방법을 통해 이모티콘이 갖고 있는 캐릭터의 특징을 객관적 지표로 14개, 감성 지표로 활용하기 위해 감성 형용사를 36개를 추출하였다. 추출된 감성 형용사는 대비되는 형용사로 구성하여 총 18개로 줄였으며, 18개의 감성 형용사는 카카오톡의 이모티콘을 인기 순으로 임의의 40개 셋을 대상으로 측정하였다. 측정을 위해 이모티콘을 평가할 조사 대상자 온라인으로 모집하였고, 277명의 20~30대의 이모티콘을 구매한 경험이 있는 소비자를 대상으로 설문을 진행하였다. 설문응답자에게 서로 다른 5개의 이모티콘 셋을 평가하도록 하였다. 평가 결과 수집된 18개의 감정 형용사는 요인분석을 통해 감성 지표 요인으로 추출하였다. 추출된 소비자 감성 지표의 요인은 "코믹", "부드러움", "모던함", "투명함"이었다. 이모티콘의 객관적 지표와 감성 지표 요인을 활용하여 소비자 만족과의 관계를 분석하였고, 객관적 지표와 감성 지표 간의 관계도 분석하였다. 이 과정에서 객관적 지표가 소비자 태도에 바로 영향을 주는 것이 아니라 감성 지표 요인을 통해 소비자 태도에 영향을 주는 매개 효과가 있음을 확인하였다. 분석 결과는 소비자의 감성 평가 메커니즘을 밝혀냈고, 소비자의 이모티콘 감성 평가 메커니즘은 객관적 지표가 감성 지표 요인에 영향을 미치며, 감성 지표 요인은 소비자 만족에 영향을 미치는 관계였다. 따라서 감성 지표 요인의 네 가지만으로 이모티콘 추천 시스템을 설계하였고, 추천 방법은 각 감성과의 거리를 유클리디안 거리로 측정하여 거리의 차가 0에 가까울수록 비슷한 감성으로 정의하였다. 본 연구에서 제안한 이모티콘 시스템의 검증을 위해 각 감성 지표 요인과 소비자 만족의 평균을 지표 값으로 활용하여 각 이모티콘 셋의 감성 패턴을 그래프로 비교하였고, 추천된 이모티콘들과 선택된 이모티콘이 대체로 비슷한 패턴을 그리는 것을 확인하였다. 정확한 검증을 위해 사전 조사하였던 소비자를 대상으로 이모티콘 추천 시스템이 제시한 결과와 유사하게 평가하였는지 유사 순위를 세 구간으로 나누어 비교하였고, 순위별 예측 정확도는 결과 1순위 81.02%, 2순위 76.64%, 3순위 81.63%였다. 본 연구의 결과는 학문적, 실무적으로 다양한 분야에서 활용 가능한 방법론을 제시하였으며, 기존에 없던 이모티콘 추천 시스템의 설계를 통해 소비자에게는 편의와 이모티콘을 서비스하는 기업에는 매출증대의 효과를 가져올 것으로 예상한다. 그리고 본 연구를 통해 지능형 이모티콘 시스템으로 발전할 수 있는 단초를 제공했다는 점에서 의미가 있다. 본 연구에서 제안한 감성 요인들을 활용하여 감성 라이브러리로 사용함으로써, 새로운 이모티콘 출시 시 감성 평가의 지표로 활용할 수 있다. 축적된 감성 라이브러리와 기업의 판매 데이터, 매출 정보, 소비자 데이터를 결합하여 본 연구에서 제안한 추천 시스템을 복합형 추천 시스템으로 발전시켜 단순 소비자의 편의성이나 매출 증가뿐만 아니라 기업에서 전략적으로 활용 가능한 지적 자산으로 활용할 수 있을 것으로 판단한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.