• Title/Summary/Keyword: Hybrid Energy Harvesting

Search Result 48, Processing Time 0.023 seconds

Enhancement of Power Generation in Hybrid Magneto-Mechano-Electric Generator with Triboelectric Effect (마찰전기 효과가 접목된 하이브리드 자기-기계-전기 발전 소자의 출력 특성 향상연구)

  • Baek, Chang Min;Kim, Min Woo;Lee, Ji Won;Kim, Hyun Ah;Jung, Ji Yun;Yoon, Jun Hyeon;Kim, Hyo Il;Park, Ye Jin;Kim, Gi Hun;Kim, So Hwa;Kim, Seung Heon;Kim, Jeong Min;Lee, Hye Seon;Jang, Jeong Won;Jeong, Min Gyo;Choi, Jin Hyeok;Ha, Seung Yun;Lee, Seungah;Choi, Han Seung;Ryu, Jungho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.6
    • /
    • pp.639-646
    • /
    • 2022
  • Energy harvesting technologies that can convert wasted various energy into usable electrical energy have been widely investigated to overcome the limitation of batteries for the powering of IoT sensors and small electronic devices. Hybrid energy harvesting is known as a technology that enhances the output power of single energy harvesting device by housing two or more various energy harvesting mechanisms. In this study, we introduce a hybrid MME (Magneto-Mechano-Electric) generator coupled with the triboelectric effect. Through FEA modeling, four triboelectric materials, including PI (Polyimide), PFA(Teflon), Cu, and Al, were selected and compared with the expected triboelectric potentials. The effect of surface morphology was investigated as well. Among various combination of triboelectric materials and surface morphologies, PFA-Al combination with the surface morphology having nano-scale square projections showed highest output potential under triboelectrification. It is also experimentally confirmed that output voltage and power of the hybrid MME generator with triboelectric material combinations.

Energy-efficiency enhancement and displacement-offset elimination for hybrid vibration control

  • Makihara, Kanjuro
    • Smart Structures and Systems
    • /
    • v.10 no.3
    • /
    • pp.193-207
    • /
    • 2012
  • New insights into our previously proposed hybrid-type method for vibration control are highlighted in terms of energy analysis, such as the assessment of energy efficiency and system stability. The hybrid method improves the bang-bang active method by combining it with an energy-recycling approach. Its simple configuration and low energy-consumption property are quite suitable especially for isolated structures whose energy sources are strictly limited. The harmful influence of the external voltage is assessed, as well as its beneficial performance. We show a new chattering prevention approach that both harvests electrical energy from piezoelectric actuators and eliminates the displacement-offset of the equilibrium point of structures. The amount of energy consumption of the hybrid system is assessed qualitatively and is compared with other control systems. Experiments and numerical simulations conducted on a 10-bay truss can provide a thorough energy-efficiency evaluation of the hybrid suppression system having our energy-harvesting system.

Development of Hybrid Energy Harvesting Block and Evaluation on Power Generation Performance (하이브리드 에너지하베스팅 블록 개발 및 발전성능 평가)

  • Kim, Hyo-Jin;Park, Ji-Young;Jin, Kyu-Nam;Noh, Myung-Hyun
    • Land and Housing Review
    • /
    • v.5 no.2
    • /
    • pp.99-106
    • /
    • 2014
  • The purpose of this study is to develop hybrid energy blocks with piezoelectric and electromagnetic induction method. The developed energy block is able to be applied to the housing and facilities in the city and is suitable to adjust the characteristics of facilities. To develop the hybrid energy block, we analyzed the characteristics and requirements of various energy block types and drew improvement and application method to develop energy blocks. We compared and analyzed the characteristics and performance of the prototype energy blocks and the developed hybrid energy blocks. According to result of the comparison and analysis, the developed energy block shows higher performance of 12.7 times for adding one vibration and 28.9 times for five consecutive vibrations than that of a existing prototype energy block. This is consistent with research purposes for W-level electrical energy production. Thus, the new energy block will likely be possible to apply to the housing and urban facility.

Development of the Energy Harvesting Device using Piezoelectric Generator (압전 발전기를 이용한 에너지 수확 장치 개발)

  • Jun, Ho-Ik;Jeoung, Sung-Su;Chong, Hyon-Ho;Park, Choong-Hyo;Park, Min-Ho;Park, Tae-Gone
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.439-439
    • /
    • 2009
  • Nowadays, source of MEMS, USN, Hybrid parts pay attention to energy harvesting. On this paper, energy harvesting was studied using piezoelectric effect. And, piezoelectric generator was designed and fabricated. Generators were designed by FEM simulation program and generators were made by attaching cymbal type metal plates on upper and bottom sides of a disc type piezoelectric ceramic. Output AC power was rectified to DC power by full bridge circuit and converted to regular voltage power by DC-DC converter. The final output power was charged to Ni-Cd battery. Using fabricated generators, output voltages dependant on thickness of ceramic, displacement of vibration, frequency of vibration were measured.

  • PDF

Energy Harvesting Using Disc Type Piezoelectric Ceramics (원판형 압전 세라믹을 이용한 에너지 수확)

  • Jun, Ho-Ik;Jeoung, Sung-Su;Chong, Hyon-Ho;Park, Min-Ho;Park, Tae-Gone
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.04b
    • /
    • pp.53-54
    • /
    • 2009
  • Nowadays, source of MEMS, USN, Hybrid parts pay attention to energy harvesting. On this paper, energy harvesting was studied using piezoelectric effect. And, piezoelectric generator was designed and fabricated. Generators were designed by FEM simulation program and generators were made by attaching cymbal type metal plates on upper and bottom sides of a disc type piezoelectric ceramic. Using fabricated generators, output voltages dependant on thickness of ceramic, displacement of vibration, frequency of vibration were measured.

  • PDF

Multi-Tag Beamforming Scheme Based on Backscatter Communication for RF Energy Harvesting Networks (RF 에너지 하베스팅 네트워크를 위한 Backscatter 통신 기반의 다중 태그 빔포밍 기법)

  • Hong, Seung Gwan;Hwang, Yu Min;Lee, Sun Yui;Kim, Jin Young
    • Journal of Satellite, Information and Communications
    • /
    • v.11 no.2
    • /
    • pp.60-64
    • /
    • 2016
  • In this paper, we propose a scheme for MIMO beamforming for the backscatter communication using a multi-tag to improve the efficiency of energy harvesting and the BER of received signals. We obtain a normal channel information through a communication between the H-AP and multi-tag. The H-AP sets parameters for the transmission scenario of the spatial channel model (SCM) using the obtained channel information and generates a SCM channel information. Then, the H-AP transmits signals that have optimal transmission power to increase the signal-to-interference-plus-noise ratio (SINR) to each of tags. Tags perform a backscatter communication with signals. The receiver performs a time switching technique of energy harvesting using backscatter signals from the multi-tag. Simulation results demonstrate effectiveness of the proposed scheme, and the harvesting efficiency and BER at the receiver is greatly improved.

Energy Efficiency of Decoupled RF Energy Harvesting Networks in Various User Distribution Environments (다양한 사용자 분포 환경에서의 비결합 무선 에너지 하베스팅 네트워크의 에너지 효율)

  • Hwang, Yu Min;Sun, Young Ghyu;Shin, Yoan;Kim, Dong In;Kim, Jin Young
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.17 no.4
    • /
    • pp.159-167
    • /
    • 2018
  • In this paper, we propose an algorithm to optimize energy efficiency in a multi-user decoupled RF energy harvesting network and experiment on the trend of energy efficiency change assuming users' various geographical distribution scenarios. In the RF energy harvesting network where both wireless data transmission and RF energy harvesting are simultaneously performed, the energy efficiency is a key indicator of network performance, and it is necessary to investigate how various factors can affect the energy efficiency. In order to increase energy efficiency effectively, we can confirm that users' distributions are important factors in the RF energy harvesting network from the simulation results.

Design of an Off Grid type High efficiency Solar charging system Using MATLAB/Simulink (MATLAB/Simulink를 이용한 오프그리드형 고효율 태양광 충전 시스템 설계)

  • Gebreslassie, Maru Mihret;kim, Min;Byun, Gi-sig;Kim, Gwan-hyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.05a
    • /
    • pp.735-737
    • /
    • 2017
  • An Off grid or remote solar electric systems are an energy supply to our home or to our companies without the utility of Grid at all. Off grid solar systems are very important for those who live in remote locations especially for developing countries where getting the electric grid is extremely expensive, inconvenient or for those who doesn't need to pay a monthly bill with the electric bill in general. The main critical components of any solar power system or renewable energy harvesting systems are the energy storage systems and its charge controller system. Energy storage systems are the essential integral part of a solar energy harvesting system and in general for all renewable energy harvesting systems. To provide an optimal solution of both high power density and high energy density at the same time we have to use hybrid energy storage systems (HESS), that combine two or more energy storage technologies with complementary characteristics. In this present work, design and simulation we use two storage systems supercapacitor for high power density and lithium based battery for high energy density. Here the system incorporates fast-response supercapacitors to provide power to manage solar smoothing and uses a battery for load shifting. On this paper discuss that the total energy throughout of the battery is much reduced and the typical thermal stresses caused by high discharge rate responses are mitigated by integrating supercapacitors with the battery storage system. In addition of the above discussion the off grid solar electric energy harvesting presented in this research paper includes battery and supercapacitor management system, MPPT (maximum power point tracking) system and back/boost convertors. On this present work the entire model of off grid electric energy harvesting system and all other functional blocks of that system is implemented in MATLAB Simulink.

  • PDF

Introduction to research and current trend about nanogenerator (나노제너레이터의 연구소개 및 최근 기술동향)

  • Kim, Sang-Woo;Kim, Seongsu;Yoon, Hong Joon;Ryu, Hanjun
    • Vacuum Magazine
    • /
    • v.1 no.4
    • /
    • pp.14-20
    • /
    • 2014
  • Since recent electronics technologies have been developed and they tend to spend huge amount of electrical power, self-powered electronics have been paid attention worldwide. To realize self-powered electronics, energy harvesting technology, which generally converts ambient energy into electrical energy, has to be introduced. Among numerous energy sources, mechanical, thermal, and electrostatic event would be of broad interest in field of energy harvesting. Here, this article introduces the promising alternative energy concepts of nanogenerator including piezoelectric, triboelectric, and hybrid types. With these nanogenerators, we are able to apply onto not only self-powered system, but expect these open green energy market.

The Performance Improvement of Hybrid Energy Harvesting Block and the Evaluation on Power Generation Performance (하이브리드 에너지하베스팅 블록의 성능개선 및 발전성능 평가)

  • Kim, Hyo-Jin;Park, Ji-Young;Jin, Kyu-Nam
    • Land and Housing Review
    • /
    • v.7 no.3
    • /
    • pp.131-136
    • /
    • 2016
  • The aim of this study was to improve the performance of hybrid energy harvesting block merge the vibrations and the pressure developed in the previous study. The power generation performance of the energy block improved in this manner was measured and compared with the energy performance of the products previously developed. In previous models, the center has placed a piezoelectric, the two sides had arranged a vibration applying electromagnetic inducing type. Improved model was disposed three in a row of three unit modules for one block. We change the design in the following way. That is, a unit module has been placed the upper piezoelectric body, the lower portion were arranged three electron donation. In laboratory conditions, the power generation performance evaluation results of the improved energy block is as follows. Once when the vibration, power generation was determined to 1.066W. When compared with previous studies, and power generation performance is improved up to 235%. When the vibration in a row 5, power generation was determined to 1.830W. When compared with previous studies, the performance is improved to 177%. The purpose of developing a hybrid energy block is intended to produce electricity by the pressure and vibration when a vehicle passes through the energy block installed in the car park the mouth portion. Electricity produced will try to take advantage of for the purpose of operating a guiding beacon and LED signage in the parking lot entrance. Therefore, it is determined that there is a need in the experiment to compare the performance of the power generation in the field.