• Title/Summary/Keyword: Hybrid Classification Method

Search Result 132, Processing Time 0.029 seconds

A Novel Image Classification Method for Content-based Image Retrieval via a Hybrid Genetic Algorithm and Support Vector Machine Approach

  • Seo, Kwang-Kyu
    • Journal of the Semiconductor & Display Technology
    • /
    • v.10 no.3
    • /
    • pp.75-81
    • /
    • 2011
  • This paper presents a novel method for image classification based on a hybrid genetic algorithm (GA) and support vector machine (SVM) approach which can significantly improve the classification performance for content-based image retrieval (CBIR). Though SVM has been widely applied to CBIR, it has some problems such as the kernel parameters setting and feature subset selection of SVM which impact the classification accuracy in the learning process. This study aims at simultaneously optimizing the parameters of SVM and feature subset without degrading the classification accuracy of SVM using GA for CBIR. Using the hybrid GA and SVM model, we can classify more images in the database effectively. Experiments were carried out on a large-size database of images and experiment results show that the classification accuracy of conventional SVM may be improved significantly by using the proposed model. We also found that the proposed model outperformed all the other models such as neural network and typical SVM models.

Power Quality Disturbances Identification Method Based on Novel Hybrid Kernel Function

  • Zhao, Liquan;Gai, Meijiao
    • Journal of Information Processing Systems
    • /
    • v.15 no.2
    • /
    • pp.422-432
    • /
    • 2019
  • A hybrid kernel function of support vector machine is proposed to improve the classification performance of power quality disturbances. The kernel function mathematical model of support vector machine directly affects the classification performance. Different types of kernel functions have different generalization ability and learning ability. The single kernel function cannot have better ability both in learning and generalization. To overcome this problem, we propose a hybrid kernel function that is composed of two single kernel functions to improve both the ability in generation and learning. In simulations, we respectively used the single and multiple power quality disturbances to test classification performance of support vector machine algorithm with the proposed hybrid kernel function. Compared with other support vector machine algorithms, the improved support vector machine algorithm has better performance for the classification of power quality signals with single and multiple disturbances.

A Hybrid Selection Method of Helpful Unlabeled Data Applicable for Semi-Supervised Learning Algorithm

  • Le, Thanh-Binh;Kim, Sang-Woon
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.3 no.4
    • /
    • pp.234-239
    • /
    • 2014
  • This paper presents an empirical study on selecting a small amount of useful unlabeled data to improve the classification accuracy of semi-supervised learning algorithms. In particular, a hybrid method of unifying the simply recycled selection method and the incrementally-reinforced selection method was considered and evaluated empirically. The experimental results, which were obtained from well-known benchmark data sets using semi-supervised support vector machines, demonstrated that the hybrid method works better than the traditional ones in terms of the classification accuracy.

A Study on Building Structures and Processes for Intelligent Web Document Classification (지능적인 웹문서 분류를 위한 구조 및 프로세스 설계 연구)

  • Jang, Young-Cheol
    • Journal of Digital Convergence
    • /
    • v.6 no.4
    • /
    • pp.177-183
    • /
    • 2008
  • This paper aims to offer a solution based on intelligent document classification to create a user-centric information retrieval system allowing user-centric linguistic expression. So, structures expressing user intention and fine document classifying process using EBL, similarity, knowledge base, user intention, are proposed. To overcome the problem requiring huge and exact semantic information, a hybrid process is designed integrating keyword, thesaurus, probability and user intention information. User intention tree hierarchy is build and a method of extracting group intention between key words and user intentions is proposed. These structures and processes are implemented in HDCI(Hybrid Document Classification with Intention) system. HDCI consists of analyzing user intention and classifying web documents stages. Classifying stage is composed of knowledge base process, similarity process and hybrid coordinating process. With the help of user intention related structures and hybrid coordinating process, HDCI can efficiently categorize web documents in according to user's complex linguistic expression with small priori information.

  • PDF

A Study on the Classification for Satellite Images using Hybrid Method (하이브리드 분류기법을 이용한 위성영상의 분류에 관한 연구)

  • Jeon, Young-Joon;Kim, Jin-Il
    • The KIPS Transactions:PartB
    • /
    • v.11B no.2
    • /
    • pp.159-168
    • /
    • 2004
  • This paper presents hybrid classification method to improve the performance of satellite images classification by combining Bayesian maximum likelihood classifier, ISODATA clustering and fuzzy C-Means algorithm. In this paper, the training data of each class were generated by separating the spectral signature using ISODATA clustering. We can classify according to pixel's membership grade followed by cluster center of fuzzy C-Means algorithm as the mean value of training data for each class. Bayesian maximum likelihood classifier is performed with prior probability by result of fuzzy C-Means classification. The results shows that proposed method could improve performance of classification method and also perform classification with no concern about spectral signature of the training data. The proposed method Is applied to a Landsat TM satellite image for the verifying test.

Alsat-2B/Sentinel-2 Imagery Classification Using the Hybrid Pigeon Inspired Optimization Algorithm

  • Arezki, Dounia;Fizazi, Hadria
    • Journal of Information Processing Systems
    • /
    • v.17 no.4
    • /
    • pp.690-706
    • /
    • 2021
  • Classification is a substantial operation in data mining, and each element is distributed taking into account its feature values in the corresponding class. Metaheuristics have been widely used in attempts to solve satellite image classification problems. This article proposes a hybrid approach, the flower pigeons-inspired optimization algorithm (FPIO), and the local search method of the flower pollination algorithm is integrated into the pigeon-inspired algorithm. The efficiency and power of the proposed FPIO approach are displayed with a series of images, supported by computational results that demonstrate the cogency of the proposed classification method on satellite imagery. For this work, the Davies-Bouldin Index is used as an objective function. FPIO is applied to different types of images (synthetic, Alsat-2B, and Sentinel-2). Moreover, a comparative experiment between FPIO and the genetic algorithm genetic algorithm is conducted. Experimental results showed that GA outperformed FPIO in matters of time computing. However, FPIO provided better quality results with less confusion. The overall experimental results demonstrate that the proposed approach is an efficient method for satellite imagery classification.

A Study on Improving the predict accuracy rate of Hybrid Model Technique Using Error Pattern Modeling : Using Logistic Regression and Discriminant Analysis

  • Cho, Yong-Jun;Hur, Joon
    • Journal of the Korean Data and Information Science Society
    • /
    • v.17 no.2
    • /
    • pp.269-278
    • /
    • 2006
  • This paper presents the new hybrid data mining technique using error pattern, modeling of improving classification accuracy. The proposed method improves classification accuracy by combining two different supervised learning methods. The main algorithm generates error pattern modeling between the two supervised learning methods(ex: Neural Networks, Decision Tree, Logistic Regression and so on.) The Proposed modeling method has been applied to the simulation of 10,000 data sets generated by Normal and exponential random distribution. The simulation results show that the performance of proposed method is superior to the existing methods like Logistic regression and Discriminant analysis.

  • PDF

Hybrid CNN-SVM Based Seed Purity Identification and Classification System

  • Suganthi, M;Sathiaseelan, J.G.R.
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.10
    • /
    • pp.271-281
    • /
    • 2022
  • Manual seed classification challenges can be overcome using a reliable and autonomous seed purity identification and classification technique. It is a highly practical and commercially important requirement of the agricultural industry. Researchers can create a new data mining method with improved accuracy using current machine learning and artificial intelligence approaches. Seed classification can help with quality making, seed quality controller, and impurity identification. Seeds have traditionally been classified based on characteristics such as colour, shape, and texture. Generally, this is done by experts by visually examining each model, which is a very time-consuming and tedious task. This approach is simple to automate, making seed sorting far more efficient than manually inspecting them. Computer vision technologies based on machine learning (ML), symmetry, and, more specifically, convolutional neural networks (CNNs) have been widely used in related fields, resulting in greater labour efficiency in many cases. To sort a sample of 3000 seeds, KNN, SVM, CNN and CNN-SVM hybrid classification algorithms were used. A model that uses advanced deep learning techniques to categorise some well-known seeds is included in the proposed hybrid system. In most cases, the CNN-SVM model outperformed the comparable SVM and CNN models, demonstrating the effectiveness of utilising CNN-SVM to evaluate data. The findings of this research revealed that CNN-SVM could be used to analyse data with promising results. Future study should look into more seed kinds to expand the use of CNN-SVMs in data processing.

A Study on Image Classification using Hybrid Method (하이브리드 기법을 이용한 영상 식별 연구)

  • Park, Sang-Sung;Jung, Gwi-Im;Jang, Dong-Sik
    • Journal of the Korea Society of Computer and Information
    • /
    • v.11 no.6 s.44
    • /
    • pp.79-86
    • /
    • 2006
  • Classification technology is essential for fast retrieval in large multi-media database. This paper proposes a combining GA(Genetic Algorithm) and SVM(Support Vector Machine) model to fast retrieval. We used color and texture as feature vectors. We improved the retrieval accuracy by using proposed model which retrieves an optimal feature vector set in extracted feature vector sets. The first performance test was executed for the performance of color, texture and the feature vector combined with color and texture. The second performance test, was executed for performance of SVM and proposed algorithm. The results of the experiment, using the feature vector combined color and texture showed a good Performance than a single feature vector and the proposed algorithm using hybrid method also showed a good performance than SVM algorithm.

  • PDF

A Study on the Land Cover Characteristics in Korea : Application of Hybrid Classifier and Topographic Normalization

  • Jeon, Seong-Woo;Jung, Hui-Cheul;Chung, Sung-Moon;Lee, Sang-Ik
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.271-280
    • /
    • 1999
  • The topographical effect resulted from rugged terrains and inhomogeneous spectral characteristics due to the complexly mixed land cover condition of Korea substantially lower the remotely sensed land cover classification accuracy In this study, a topographic correction method using digital elevation model to alleviate the topographic effects. To deal with inhomogeneous spectral characteristic, a hybrid classifier with inclusion of prior probabilities was introduced. This investigation concluded that the topographical normalization and hybrid classification with prior probabilities are effective on rugged landscape. The overall and average classification accuracies were improved by 0.92% and 1.016% respectively. The most substantial and noticeable accuracy improvement was observed in forest areas.

  • PDF