• Title/Summary/Keyword: Hybrid Architecture

Search Result 654, Processing Time 0.031 seconds

Genetically Optimized Hybrid Fuzzy Neural Networks Based on Linear Fuzzy Inference Rules

  • Oh Sung-Kwun;Park Byoung-Jun;Kim Hyun-Ki
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.2
    • /
    • pp.183-194
    • /
    • 2005
  • In this study, we introduce an advanced architecture of genetically optimized Hybrid Fuzzy Neural Networks (gHFNN) and develop a comprehensive design methodology supporting their construction. A series of numeric experiments is included to illustrate the performance of the networks. The construction of gHFNN exploits fundamental technologies of Computational Intelligence (CI), namely fuzzy sets, neural networks, and genetic algorithms (GAs). The architecture of the gHFNNs results from a synergistic usage of the genetic optimization-driven hybrid system generated by combining Fuzzy Neural Networks (FNN) with Polynomial Neural Networks (PNN). In this tandem, a FNN supports the formation of the premise part of the rule-based structure of the gHFNN. The consequence part of the gHFNN is designed using PNNs. We distinguish between two types of the linear fuzzy inference rule-based FNN structures showing how this taxonomy depends upon the type of a fuzzy partition of input variables. As to the consequence part of the gHFNN, the development of the PNN dwells on two general optimization mechanisms: the structural optimization is realized via GAs whereas in case of the parametric optimization we proceed with a standard least square method-based learning. To evaluate the performance of the gHFNN, the models are experimented with a representative numerical example. A comparative analysis demonstrates that the proposed gHFNN come with higher accuracy as well as superb predictive capabilities when comparing with other neurofuzzy models.

Managing Deadline-constrained Bag-of-Tasks Jobs on Hybrid Clouds with Closest Deadline First Scheduling

  • Wang, Bo;Song, Ying;Sun, Yuzhong;Liu, Jun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.7
    • /
    • pp.2952-2971
    • /
    • 2016
  • Outsourcing jobs to a public cloud is a cost-effective way to address the problem of satisfying the peak resource demand when the local cloud has insufficient resources. In this paper, we studied the management of deadline-constrained bag-of-tasks jobs on hybrid clouds. We presented a binary nonlinear programming (BNP) problem to model the hybrid cloud management which minimizes rent cost from the public cloud while completes the jobs within their respective deadlines. To solve this BNP problem in polynomial time, we proposed a heuristic algorithm. The main idea is assigning the task closest to its deadline to current core until the core cannot finish any task within its deadline. When there is no available core, the algorithm adds an available physical machine (PM) with most capacity or rents a new virtual machine (VM) with highest cost-performance ratio. As there may be a workload imbalance between/among cores on a PM/VM after task assigning, we propose a task reassigning algorithm to balance them. Extensive experimental results show that our heuristic algorithm saves 16.2%-76% rent cost and improves 47.3%-182.8% resource utilizations satisfying deadline constraints, compared with first fit decreasing algorithm, and that our task reassigning algorithm improves the makespan of tasks up to 47.6%.

Shear Strength of Hybrid Beams Combining Precast Concrete and Cast-In-Place Concrete (프리캐스트 콘크리트와 현장타설 콘크리트 복합 보의 전단강도)

  • Kim, Chul-Goo;Park, Hong-Gun;Hong, Geon-Ho;Kang, Su-Min
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.2
    • /
    • pp.175-185
    • /
    • 2013
  • Currently in precast concrete construction, precast concrete and cast-in-place concrete with different concrete strengths are used. However, current design codes do not provide shear design methods for PC-CIP hybrid members using dual concrete strengths. In the present study, the shear strengths of beams using dual concrete compressive strengths (24 MPa, 60 MPa) were tested. The test variables were the area ratio of the two concretes, longitudinal bar ratio, and shear span-to-depth ratio. The shear strengths of test specimens were evaluated by current design methods, using an effective concrete strength (considering the area ratio of the two concrete strengths). The test result showed that when 60 MPa concrete was used in the compressive zone and the longitudinal bar ratio was low, the shear strengths of the test specimens were less than the predictions. On the basis of the results, design recommendations were provided for the shear design of the PC-CIP hybrid beams.

A Study on the Operational Strategy for Hybrid Ventilation System in Apartment unit focused on Indoor Air Quality (실내공기질을 고려한 공동주택의 하이브리드 환기 시스템의 운영에 관한 연구)

  • Lee, Yong-Jun;Leigh, Seung-Bok;Lee, Kyung-Hoi
    • KIEAE Journal
    • /
    • v.4 no.3
    • /
    • pp.203-210
    • /
    • 2004
  • This dissertation identifies and investigates the possible control modes of hybrid ventilation system in applying to general apartments. It evaluates range of hybrid ventilation control modes in terms of indoor air quality, thermal comfort, and energy consumption in a living room and a kitchen of the $1000m^2$ apartment. The TRNSYS simulation program was used for evaluating the following four ventilation types : A ventilation mode relying on only infiltration for supplying air, A natural ventilation mode considering with weather condition, A hybrid ventilation (natural + mechanical ventilation) mode allowing minimum ventilation with no heat exchange, and a hybrid ventilation mode with heat exchange. This study shows the following results. As temperature being controlled by heating cooling equipments, there is without significant difference in thermal performance among ventilation types. Regarding Indoor Air quality, Indoor air contamination level of the hybrid ventilation case consistently keep the lower levels. The hybrid ventilation modes consume more energy by a 49% as compared to the A ventilation mode relying on only infiltration for supplying air. It is caused by the continuous ventilation for keeping good indoor air quality; the increase of energy consumption can be attributable to the increase of the heating energy. Therefore, the heat exchange between indoor and outdoor air is required during heating season in severe weather conditions. During the cooling seasons, Introducing natural ventilation can achieve energy saving by 40 ~ 45%. Thus, it can be an effective strategies for energy saving. Based on these results, a hybrid ventilation system can be suggested as an effective ventilation strategy for archiving high level of indoor air quality, thermal comfort, and energy consumption.

Stiffness of hybrid systems with and without pre-stressing

  • Miljanovic, Sladana;Zlatar, Muhamed
    • Coupled systems mechanics
    • /
    • v.9 no.2
    • /
    • pp.147-161
    • /
    • 2020
  • Constructive merging of "basic" systems of different behavior creates hybrid systems. In doing so, the structural elements are grouped according to the behavior in carrying the load into a geometric order that provides sufficient load and structure functionality and optimization of the material consumption. Applicable in all materializations and logical geometric forms is a transparent system suitable for the optimization of load-bearing structures. Research by individual authors gave insight into suitable system constellations from the aspect of load capacity and the approximatemethod of estimating the participation of partialstiffnesswithin the rigidity ofthe hybrid system. The obtained terms will continue to be the basisfor our own research of the influence of variable parameters on the behavior of hybrid systemsformed of glued laminated girder and cable of different geometric shapes. Previous research has shown that by applying the strut-type hybrid systems can increase the load capacity and reduce the deformability ofthe free girder.The implemented parametric analysis pointsto the basic parameterin the behavior of these systems-the rigidity ofindividual elements and the overallstiffnessofthe system.The basic idea ofpre-stressing is that, in the load system or individual load-bearing element, prior to application of the exploitation load, artificially challenge the forcesthatshould optimize the finalsystembehaviorin the overall load. Pre-stressing is possible only if the supporting system orsystem's element possesssufficientstrength orstiffness, orreaction to the imposed forces of pre-stressing. In this paper will be presented own research of the relationship of partial stiffness of strut-type hybrid systemsofdifferentgeometric forms.Conducted parametric analysisofhybridsystemswithandwithoutpre-stressing, and on the example of the glulam-steel strut-type hybrid system under realistic conditions of change in the moisture content ofthe wooden girder,resulted in accurate expressions and diagramssuitable for application in practice.

A Design and Implementation of a Timing Analysis Simulator for a Design Space Exploration on a Hybrid Embedded System (Hybrid 내장형 시스템의 설계공간탐색을 위한 시간분석 시뮬레이터의 설계 및 구현)

  • Ahn, Seong-Yong;Shim, Jea-Hong;Lee, Jeong-A
    • The KIPS Transactions:PartA
    • /
    • v.9A no.4
    • /
    • pp.459-466
    • /
    • 2002
  • Modern embedded system employs a hybrid architecture which contains a general micro processor and reconfigurable devices such as FPGAS to retain flexibility and to meet timing constraints. It is a hard and important problem for embedded system designers to explore and find a right system configuration, which is known as design space exploration (DSE). With DES, it is possible to predict a final system configuration during the design phase before physical implementation. In this paper, we implement a timing analysis simulator for a DSE on a hybrid embedded system. The simulator, integrating exiting timing analysis tools for hardware and software, is designed by extending Y-chart approach, which allows quantitative performance analysis by varying design parameters. This timing analysis simulator is expected to reduce design time and costs and be used as a core module of a DSE for a hybrid embedded system.

Evaluation of Flexural Strength and Ductility of Hybrid Fiber Reinforced UHSC Flexural Members (하이브리드 강섬유 보강 초고강도 콘크리트 휨파괴형 부재의 강도 및 연성 평가에 관한 연구)

  • Yuh, Ok-Kyung;Bae, Baek-Il
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.6
    • /
    • pp.61-69
    • /
    • 2019
  • In this study, the flexural strength and curvature ductility factor of single and hybrid fiber reinforced ultra high strength concrete flexural members with conventional steel rebar were evaluated by experimental program with 3-UHSC beams. Test specimens were loaded by 4-pointed flexural loading. According to the test results, hybrid fiber reinforced UHPC test specimens had higher moment resisting capacity and ductility. For the safe design of hybrid fiber reinforced UHPC, test specimens were analyzed according to the sectional analysis method with material models suggested by K-UHPC design recommendation. Current K-UHPC design recommendation predict the moment resisting capacity of member conventionally and over-estimated the ductility.

Real-time large-scale hybrid testing for seismic performance evaluation of smart structures

  • Mercan, Oya;Ricles, James;Sause, Richard;Marullo, Thomas
    • Smart Structures and Systems
    • /
    • v.4 no.5
    • /
    • pp.667-684
    • /
    • 2008
  • Numerous devices exist for reducing or eliminating seismic damage to structures. These include passive dampers, semi-active dampers, and active control devices. The performance of structural systems with these devices has often been evaluated using numerical simulations. Experiments on structural systems with these devices, particularly at large-scale, are lacking. This paper describes a real-time hybrid testing facility that has been developed at the Lehigh University NEES Equipment Site. The facility enables real-time large-scale experiments to be performed on structural systems with rate-dependent devices, thereby permitting a more complete evaluation of the seismic performance of the devices and their effectiveness in seismic hazard reduction. The hardware and integrated control architecture for hybrid testing developed at the facility are presented. An application involving the use of passive elastomeric dampers in a three story moment resisting frame subjected to earthquake ground motions is presented. The experiment focused on a test structure consisting of the damper and diagonal bracing, which was coupled to a nonlinear analytical model of the remaining part of the structure (i.e., the moment resisting frame). A tracking indictor is used to track the actuator ability to achieve the command displacement during a test, enabling the quality of the test results to be assessed. An extension of the testbed to the real-time hybrid testing of smart structures with semi-active dampers is described.

An Efficient Variable Rearrangement Technique for STT-RAM Based Hybrid Caches

  • Youn, Jonghee M.;Cho, Doosan
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.11 no.2
    • /
    • pp.67-78
    • /
    • 2016
  • The emerging Spin-Transfer Torque RAM (STT-RAM) is a promising component that can be used to improve the efficiency as a result of its high storage density and low leakage power. However, the state-of-the-art STT-RAM is not ready to replace SRAM technology due to the negative effect of its write operations. The write operations require longer latency and more power than the same operations in SRAM. Therefore, a hybrid cache with SRAM and STT-RAM technologies is proposed to obtain the benefits of STT-RAM while minimizing its negative effects by using SRAM. To efficiently use of the hybrid cache, it is important to place write intensive data onto the cache. Such data should be placed on SRAM to minimize the negative effect. Thus, we propose a technique that optimizes placement of data in main memory. It drives the proper combination of advantages and disadvantages for SRAM and STT-RAM in the hybrid cache. As a result of the proposed technique, write intensive data are loaded to SRAM and read intensive data are loaded to STT-RAM. In addition, our technique also optimizes temporal locality to minimize conflict misses. Therefore, it improves performance and energy consumption of the hybrid cache architecture in a certain range.

A Segmentation-Based HMM and MLP Hybrid Classifier for English Legal Word Recognition (분할기반 은닉 마르코프 모델과 다층 퍼셉트론 결합 영문수표필기단어 인식시스템)

  • 김계경;김진호;박희주
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.3
    • /
    • pp.200-207
    • /
    • 2001
  • In this paper, we propose an HMM(Hidden Markov modeJ)-MLP(Multi-layer perceptron) hybrid model for recognizing legal words on the English bank check. We adopt an explicit segmentation-based word level architecture to implement an HMM engine with nonscaled and non-normalized symbol vectors. We also introduce an MLP for implicit segmentation-based word recognition. The final recognition model consists of a hybrid combination of the HMM and MLP with a new hybrid probability measure. The main contributions of this model are a novel design of the segmentation-based variable length HMMs and an efficient method of combining two heterogeneous recognition engines. ExperimenLs have been conducted using the legal word database of CENPARMI with encouraging results.

  • PDF