• Title/Summary/Keyword: Hybrid Actuator

Search Result 168, Processing Time 0.028 seconds

Haptic Experimentation for Single Degree of Freedom Force Output Joystick using Hybrid Motor/Brake Actuator

  • Jinung An;Kwon, Dong-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.171.1-171
    • /
    • 2001
  • This paper describes the design and implementation of a new type of a force reflective joystick. It has single degree of freedom that is actuated by motor and brake pair. The use of motor and brake allows various objects to be simulated without the stability problem and related safety issues involved with high torque motors only. The joystick performance is measured by its ability to simulate various test objects. Simple test objects are modeled as a benchmark test of the system´s performance and to evaluate different control approaches for hybrid motor/brake actuator. The force output joystick is capable of simulating forces in a variety of virtual environments. This device demonstrates the effectiveness of a hybrid motor/brake haptic actuator.

  • PDF

Performance Evaluation of a Large-scale MR Damper for Controlling Seismic Response using a Real-time Hybrid Test Method (실시간 하이브리드 실험법을 이용한 대형 MR감쇠기의 제진 성능평가)

  • Chung, Hee-San;Lee, Sung-Kyung;Park, Eun-Churn;Youn, Kyung-Jo;Min, Kyung-Won;Lee, Heon-Jae;Choi, Kang-Min;Moon, Suk-Jun;Jung, Hyung-Jo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.655-660
    • /
    • 2007
  • This paper presents real-time hybrid test method of large-scale MR damper applied to a building structure under seismic excitation. The real-time hybrid test using an actuator for the control performance evaluation of a MR damper controlling the response of earthquake-excited building structure is experimentally implemented. In the test, the building structure is used as a numerical part, on which a large-scale MR damper adopted as an experimental part was installed to reduce its response. At first, the force that is acting between a MR damper and building structure is measured from the load cell attached on the actuator system and is fed-back to the computer to control the motion of the actuator. Then, the actuator is so driven that the error between the interface displacement computed from the numerical building structure with the excitations of earthquake and the fed-back interface force and that measured from the actuator. The control efficiency of the MR damper used in this paper is experimentally confirmed by implementing this process of experiment on real-time.

  • PDF

Performance Evaluation of a Large-scale MR Damper for Controlling Seismic Responses Using a Real-time Hybrid Test Method (실시간 하이브리드 실험법을 이용한 대형 MR감쇠기의 제진 성능평가)

  • Park, Eun-Churn;Lee, Sung-Kyung;Youn, Kyung-Jo;Chung, Hee-San;Lee, Heon-Jae;Choi, Kang-Min;Moon, Suk-Jun;Jung, Hyung-Jo;Min, Kyung-Won
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.1
    • /
    • pp.131-138
    • /
    • 2008
  • This paper presents real-time hybrid test method of large-scale MR damper applied to a building structure under seismic excitation. The real-time hybrid test using an actuator for the control performance evaluation of a MR damper controlling the response of earthquake-excited building structure is experimentally implemented. In the test, the building structure is used as a numerical part, on which a large-scale MR damper adopted as an experimental part was installed to reduce its response. At first, the force that is acting between a MR damper and building structure is measured from the load cell attached on the actuator system and is fed-back to the computer to control the motion of the actuator. Then, the actuator is so driven that the error between the interface displacement computed from the numerical building structure with the excitations of earthquake and the fed-back interface force and that measured from the actuator. The control efficiency of the MR damper used in this paper is experimentally confirmed by implementing this process of experiment on real-time.

New Mount with Moving-Coil-Type Electromagnetic Actuator for Naval Shipboard Equipment (가동코일형 전자기식 작동기를 결합한 함정 탑재장비용 마운트 개발)

  • Shin, Y.H.;Moon, S.J.;Jung, W.J.;Jeon, J.J.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.10
    • /
    • pp.885-894
    • /
    • 2013
  • In this study, a new hybrid mount with a moving-coil-type electromagnetic actuator is developed to reduce the vibration transmitted from naval shipboard equipment to the ship hull structure. The detailed design of the hybrid mount is determined through several design stages with electromagnetic numerical analysis using Maxwell software. The hybrid mount, which combines a rubber mount with an electromagnetic actuator, has a fail-safe function for shock resistance. The mount is fabricated and tested using a universal testing machine to check the design specifications. Finally, control tests are carried out on the hybrid mount to confirm its performance and applicability.

Experimental Investigation on Vibration Control Performances of the Piezoelectric Hybrid Mount (압전 하이브리드 마운트의 진동제어 성능에 대한 실험적 고찰)

  • Han, Young-Min
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.11
    • /
    • pp.203-209
    • /
    • 2020
  • A hybrid mount featuring rubber element and piezoelectric actuator is devised to reduce vibration when starting a vehicle engine. As a first step, a passive mount adopting rubber element is manufactured and its dynamic characteristics are experimentally evaluated. After evaluating dynamic characteristics of the manufactured inertial piezoelectric actuator, the proposed hybrid mount is then established by integrating the piezoelectric actuator with the rubber element for performance improvement at non-resonant high frequencies. A mathematical model of the established active vibration control system is formulated and expressed in the state space form. Subsequently, sliding mode controller (SMC) is designed to attenuate the vibration transmitted from the base excitation. Finally, control performances of the proposed hybrid mount are evaluated such as transmissibility in frequency domain and time responses.

Performance validation and application of a mixed force-displacement loading strategy for bi-directional hybrid simulation

  • Wang, Zhen;Tan, Qiyang;Shi, Pengfei;Yang, Ge;Zhu, Siyu;Xu, Guoshan;Wu, Bin;Sun, Jianyun
    • Smart Structures and Systems
    • /
    • v.26 no.3
    • /
    • pp.373-390
    • /
    • 2020
  • Hybrid simulation (HS) is a versatile tool for structural performance evaluation under dynamic loads. Although real structural responses are often multiple-directional owing to an eccentric mass/stiffness of the structure and/or excitations not along structural major axes, few HS in this field takes into account structural responses in multiple directions. Multi-directional loading is more challenging than uni-directional loading as there is a nonlinear transformation between actuator and specimen coordinate systems, increasing the difficulty of suppressing loading error. Moreover, redundant actuators may exist in multi-directional hybrid simulations of large-scale structures, which requires the loading strategy to contain ineffective loading of multiple actuators. To address these issues, lately a new strategy was conceived for accurate reproduction of desired displacements in bi-directional hybrid simulations (BHS), which is characterized in two features, i.e., iterative displacement command updating based on the Jacobian matrix considering nonlinear geometric relationships, and force-based control for compensating ineffective forces of redundant actuators. This paper performs performance validation and application of this new mixed loading strategy. In particular, virtual BHS considering linear and nonlinear specimen models, and the diversity of actuator properties were carried out. A validation test was implemented with a steel frame specimen. A real application of this strategy to BHS on a full-scale 2-story frame specimen was performed. Studies showed that this strategy exhibited excellent tracking performance for the measured displacements of the control point and remarkable compensation for ineffective forces of the redundant actuator. This strategy was demonstrated to be capable of accurately and effectively reproducing the desired displacements in large-scale BHS.

Hybrid Vibration Control of Smart Laminated Composite Beams using Piezoelectric and Viscoelastic Material

  • Kang, Young-Kyu
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.4 no.1
    • /
    • pp.37-42
    • /
    • 2003
  • Active control of flexural vibrations of smart laminated composite beams has been carried out using piezoceramic sensor/actuator and viscoelastic material. The beams with passive constrained layer damping have been analyzed by formulating the equations of motion through the use of extended Hamilton's principle. The dynamic characteristics such as damping ratio and modal damping of the beam are calculated for various fiber orientations by means of iterative complex eigensolution method. This paper addresses a design strategy of laminated composite under flexural vibrations to design structure with maximum possible damping capacity.

Active Vibration Control Using Piezostack Based Mount (압전작동기 마운트를 이용한 능동진동제어)

  • Nguyen, Vien-Quoc;Choi, Sang-Min;Paeng, Yong-Seok;Han, Young-Min;Choi, Seung-Bok;Moon, Seok-Jun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.63-68
    • /
    • 2007
  • This paper presents vibration control performance of an active hybrid mount featuring piezostack actuators. The proposed hybrid mount is devised by adopting piezostack as an active actuator and rubber as a passive element. After experimentally identifying actuating force characteristics of the piezostack and dynamic characteristics of the rubber, the hybrid mount was designed and manufactured. Subsequently, a vibration control system with a specific mass loading is constructed, and its governing equations of motion are derived. In order to actively attenuate vibration transmitted from the base, a feedforward controller is formulated and experimentally realized. Vibration control responses are then evaluated in time and frequency domains.

  • PDF

Development of Hybrid Excavator for Regeneration of Boom Potential Energy (작업장치 위치에너지 회생을 위한 하이브리드 굴삭기 시스템 개발)

  • Yoon, J.I.;Ahn, K.K.;Truong, D.Q.;Kang, J.M.;Kim, J.H.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.6 no.4
    • /
    • pp.1-8
    • /
    • 2009
  • Nowadays with the high fuel prices, the demands for energy saving and green emission of construction machinery have highly been increased without sacrifice of working performance, safety and reliability. The aim of this paper is to propose a new energy saving hybrid excavator system using an electro-hydraulic actuator driven by an electric motor/generator for the regeneration of potential energy. A 5 ton class excavator is analyzed, developed with the boom for the evaluation of the designed system. The hardware implementation is also presented in this paper. A control strategy for the hybrid excavator is proposed to operate the machine with a highest efficiency. The energy saving ability of the proposed excavator is clearly verified through simulation and experimental results in comparison with a conventional hydraulic excavator.

  • PDF

A Study on Development of an Active Hybrid Mount for Naval Shipboard Equipment (함정 탑재장비용 능동 하이브리드 마운트 개발에 대한 연구)

  • Moon, S.J.;Choi, S.M.;Jeong, J.A.;Choi, S.B.;Jung, W.J.;Koo, J.Y.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.7
    • /
    • pp.685-692
    • /
    • 2010
  • A hybrid mount for shipboard machinery installed on naval ships was developed. The mount is combined with a rubber mount and a piezostack actuator. The rubber mount is one of the most popular and effective passive mounts to have been applied to various vibration systems to date. The piezostack actuator is featured by a fast response time, small displacement and low power consumption. Through a series of experimental tests conducted in accordance with MIL-M-17185A(SHIPS), MIL-M-17508F(SH), and MIL-S-901D which are US military specifications related to the performance requirements of the mount, it has been confirmed that the hybrid mount shows more effective performance for use in naval ships.