• Title/Summary/Keyword: Humidity effects

Search Result 966, Processing Time 0.026 seconds

Evaluation of the influence of creep and shrinkage determinants on column shortening in mid-rise buildings

  • B-Jahromi, Ali;Rotimi, Abdulazeez;Tovi, Shivan;Goodchild, Charles;Rizzuto, Joseph
    • Advances in concrete construction
    • /
    • v.5 no.2
    • /
    • pp.155-171
    • /
    • 2017
  • The phenomenon of concrete column shortening has been widely acknowledged since it first became apparent in the 1960s. Axial column shortening is due to the combined effect of elastic and inelastic deformations, shrinkage and creep. This study aims to investigate the effects of ambient temperature, relative humidity, cement hardening speed and aggregate type on concrete column shortening. The investigation was conducted using a column shortening prediction model which is underpinned by the Eurocode 2. Critical analysis and evaluation of the results showed that the concrete aggregate types used in the concrete have significant impact on column shortening. Generally, aggregates with higher moduli of elasticity hold the best results in terms of shortening. Cement type used is another significant factor, as using slow hardening cement gives better results compared to rapid hardening cement. This study also showed that environmental factors, namely, ambient temperature and relative humidity have less impact on column shortening.

Effects of Temperature and Relative Humidity on the Physical Properties of Electronic Copying Paper (온·습도 조건이 전자 복사용지의 물리적 특성에 미치는 영향)

  • Kang, Kwang-Ho;Kim, Hyoung-Jin
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.44 no.3
    • /
    • pp.70-78
    • /
    • 2012
  • For evaluating the printing suitability of electronic copying papers in the aspect of climate conditions, 12 samples of copying papers being generally used in Korea and worldwide were collected. The copying papers were controlled by various temperature and humidity options in conditioning equipment in order to simulate the specific circumstances of dry, temperate or tropical climate, and the pre-heating system of photocopying machines during printing. As results, some copying papers showed several physical problems, especially in recycled copying papers and a normal paper with original printing faulty. These problems of copying papers were mostly resulted in extremely high moisture circumstance, and in lower levels of tensile strength and tensile stiffness. The moisture contents of copying papers during passing through the pre-heater system of photocopying machine could be rapidly decreased because paper is exposed to high temperature around the pre-heating zone. The copying paper, for example of XR3 sample, containing low moisture contents below 2% had high exfoliating possibility of toner transfer from copying paper.

Conductive Polymer Coated Electro-active Paper(EAPap) (전도성 고분자를 결합한 EAPap작동기에 관한 연구)

  • Yun, Sungryul;Ounaies Zoubeida;Bae, Seung-Hun;Kim, Jaehwan
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.9 s.102
    • /
    • pp.1077-1083
    • /
    • 2005
  • Electro-Active Paper (EAPap) is one of attractive electro-active polymer (EAP) materials for artificial muscles due to its many advantages such as light weight, biologically degradable, low cost, large displacement output, low actuation voltage and low power consumption. However, drawbacks of EAPap actuators include low force output and humidity dependence. To enhance the performance of EAPap, conductive polymer (PPy) and SWNT/conductive polymer (PANI) are coated on EAPap PPy as conductive polymer is coated on cellulose EAPap by means of electrochemical deposition. Two different dopants are used in PPy through conducting polymer processing. SWNTS are mixed with PANI in emeraldine base along with different dopants. The compound materials are coated on cellulose EAPap using spin coating system. The performance of PPy/EAPap and SWNT/PANI/EAPap are evaluated in terms of bending displacement, blocked force, and the effects of dopants, humidity, coaling time, voltage and frequency are investigated. Comparing with EAPap actuators, SWNT/PANI/EAPap actuators show $200\%$ improvement of bending displacement and $300\%$ increment of blocked force.

Effect of Temperature and Relative Humidity on Growth of Aspergillus and Penicillium spp. and Biocontrol Activity of Pseudomonas protegens AS15 against Aflatoxigenic Aspergillus flavus in Stored Rice Grains

  • Mannaa, Mohamed;Kim, Ki Deok
    • Mycobiology
    • /
    • v.46 no.3
    • /
    • pp.287-295
    • /
    • 2018
  • In this study, we evaluated the effect of different temperatures (10, 20, 30, and $40^{\circ}C$) and relative humidities (RHs; 12, 44, 76, and 98%) on populations of predominant grain fungi (Aspergillus candidus, Aspergillus flavus, Aspergillus fumigatus, Penicillium fellutanum, and Penicillium islandicum) and the biocontrol activity of Pseudomonas protegens AS15 against aflatoxigenic A. flavus KCCM 60330 in stored rice. Populations of all the tested fungi in inoculated rice grains were significantly enhanced by both increased temperature and RH. Multiple linear regression analysis revealed that one unit increase of temperature resulted in greater effects than that of RH on fungal populations. When rice grains were treated with P. protegens AS15 prior to inoculation with A. flavus KCCM 60330, fungal populations and aflatoxin production in the inoculated grains were significantly reduced compared with the grains untreated with strain AS15 regardless of temperature and RH (except 12% RH for fungal population). In addition, bacterial populations in grains were significantly enhanced with increasing temperature and RH, regardless of bacterial treatment. Higher bacterial populations were detected in biocontrol strain-treated grains than in untreated control grains. To our knowledge, this is the first report showing consistent biocontrol activity of P. protegens against A. flavus population and aflatoxin production in stored rice grains under various environmental conditions of temperature and RH.

The study on the estimation of heat transfer coefficient through the counterflow concentric tube using refrigerant and moisture air (냉매와 습공기가 교차하는 2중관에서 전열계수 예측을 위한 연구)

  • 조권희
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.5
    • /
    • pp.687-694
    • /
    • 1999
  • This study was conducted to develop new drying process for automatic control and marine engi-neering system. Air-water tests were carried out to investigate dryer performance. The dispersed flow in he dryer test apparatuses was also simulated by using a numerical code which solves the Dittus-Boelter equation for continuous liquid phase and the Reynolds equation of droplet motion for continuous liquid phase and the Reynolds equation of droplet motion for dispersed phase to predict droplet removal efficiency. Proper conditions for dehumidification were optimized by response ambient conditions. When the selected indexes were constrained in the range of 85-98% moisture content above $15^{\circ}$ and more than mass flow rates of moist air 750kg/h. The numerical results were compared with the experimental data pertaining to the removal effi-ciency at chamber stage and overall pressure drop along concentric tubes Good agreement was obtained as for the efficiency while relatively poor agreement was obtained for the relative humidity. The results also showed that the efficiency depended strongly on the relative humidity at the inlet condition which indicated the importance of estimating the heat exchanger length. Effects of some design parameters in both removal efficiency and breakthrough onset condition are discussed.

  • PDF

A Computer Simulation for Performance Prediction of Fin-Tube Heat Exchanger under Frosting Conditions (착상조건 하에서 핀-관 열교환기의 성능예측을 위한 컴퓨터 시뮬레이션)

  • Lee, K.S.;Pak, H.Y.;Lee, W.Y.;Lee, T.H.;Lee, S.Y.;Lee, M.R.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.7 no.1
    • /
    • pp.161-170
    • /
    • 1995
  • This study is concerned with the numerical analysis of performance on fin-tube heat exchanger under frosting condition. In this work, tube-by-tube method using LMED is employed. The present results are compared with O'Neal's experimental and numerical results. A standard evaporator model with 2rows-2columns is selected to investigate the effects of the various parameters such as fin pitch, air flow velocity, and humidity. The results show that frost thickness and the amount of frost per unit area decrease as fin-pitch becomes narrower. In the meantime, frost thickness and accumulation rate increase with higher inlet air humidity. It is shown that heat transfer rate increases during 30minutes and then it decreases. Heat transfer rate and the amount of frost increase with air velocity, however frost thickness does not increase over a certain velocity.

  • PDF

Physicochemical Properties of Chaga (Inonotus obliquus) Mushroom Powder as Influenced by Drying Methods

  • Lee, Min-Ji;Seog, Eun-Ju;Lee, Jun-Ho
    • Preventive Nutrition and Food Science
    • /
    • v.12 no.1
    • /
    • pp.40-45
    • /
    • 2007
  • The effects of drying methods on the physicochemical properties of chaga (Inonotus obliquus) mushroom powder were investigated. Scanning electron micrograph revealed that freeze drying produced smaller particle- sized samples which in turn resulted in higher porosity than did vacuum and hot-air drying. Samples prepared by freeze drying showed a significantly higher L*-value as compared with those prepared by hot-air drying and vacuum drying (p<0.05). The lightness (L*-value) significantly decreased with increasing relative humidity and storage temperature regardless of drying method (p<0.05). The yellowness (b*-value) increased significantly with increasing relative humidity (p<0.05). Browning index was significantly lower in samples prepared by freeze drying (p<0.05) but not significantly different between samples dried by hot-air and vacuum drying. Freeze dried sample exhibited a significantly higher degree of rehydration than other samples (p<0.05) probably due to the small particle size. Water solubility of the freeze dried sample was higher than those of the other methods while swelling ratio of the same sample appeared to be lower than those of others. Freeze dried chaga mushroom powder contained significantly lower amount of total phenolics and total sugar as compared to other samples (p<0.05).

Correlation analysis of solar radiation and meteorological parameters on high ozone concentration (태양복사 및 기상요소의 고농도 오존형성에 대한 상관성 분석)

  • An, Jae Ho
    • KIEAE Journal
    • /
    • v.12 no.6
    • /
    • pp.93-98
    • /
    • 2012
  • The concerns on high ozone concentration phenomenon is significantly growing in Seoul metropolitan area including the industry complex area, like Shiwha Banwol area. The aims of this research is the analysis of relationship between high concentrations of $O_3$ and solar radiation parameters in atmosphere. The understanding of the effects of solar radiation intensity, humidity, high air temperature on ozone concentration in a day is very useful to provide a direction for reducing of the high ozone concentration to a local government or a metropolitan government. The correlation analysis between maximum ozone concentration and various meteorological parameters in 2009 - 2011 carried out using IBM's SPSS program. The results showed that the mean correlations coefficient (R) between daily Ozone maximum and solar radiation resulted R = 0.64 during 2011. May - September in 10 air pollution stations. In case of correlations between daily ozone maximum and relative humidity showed negative correlation R = -0.61. The correlation analysis with mean air temperature during 1-3 PM resulted R = 0.29. This low correlation coefficient could be corrected by using of categorized data of ozone concentration. The daily maximum ozone concentration is more dependent on peak solar radiation and high air temperature during 1-3 PM than its simple daily maximum values. The results of this research would be used to develop the high ozone alert system around Seoul metropolitan area. This correlation analysis could be partially integrated to prediction of ozone peak concentration in connection with other methods like classification and regression tree(CART).

The introduction of Engine Performance Test for Miniature Turbojet Engine considering humidity effects (습도 영향을 고려한 초소형 터보제트 엔진 성능시험 소개)

  • Lee, Bo-Hwa;Lee, Kyung-Jae;Yang, Soo-Seok;Kim, Yu-Il
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.335-338
    • /
    • 2010
  • The moisture in the atmosphere exerts a lot of influence upon Gas turbine engine performances. There is a noticeable influence of wet air at the summer sea level, high flight mach number and low engine rpm increasingly. An altitude Engine Test Facility is used to accomplish the engine performance tests at dry air condition and wet air condition, through which engine performance results is revealed. In the result, net thrust and specific fuel consumption measured -2.826% and 1.325%, respectively at wet air condition compared to dry air condition.

  • PDF

The coupling effect of drying shrinkage and moisture diffusion in concrete

  • Suwito, A.;Ababneh, Ayman;Xi, Yunping;Willam, Kaspar
    • Computers and Concrete
    • /
    • v.3 no.2_3
    • /
    • pp.103-122
    • /
    • 2006
  • Drying shrinkage of concrete occurs due to the loss of moisture and thus, it is controlled by moisture diffusion process. On the other hand, the shrinkage causes cracking of concrete and affects its moisture diffusion properties. Therefore, moisture diffusion and drying shrinkage are two coupled processes and their interactive effect is important for the durability of concrete structures. In this paper, the two material parameters in the moisture diffusion equation, i.e., the moisture capacity and humidity diffusivity, are modified by two different methods to include the effect of drying shrinkage on the moisture diffusion. The effect of drying shrinkage on the humidity diffusivity is introduced by the scalar damage parameter. The effect of drying shrinkage on the moisture capacity is evaluated by an analytical model based on non-equilibrium thermodynamics and minimum potential energy principle for a two-phase composite. The mechanical part of drying shrinkage is modeled as an elastoplastic damage problem. The coupled problem of moisture diffusion and drying shrinkage is solved using a finite element method. The present model can predict that the drying shrinkage accelerates the moisture diffusion in concrete, and in turn, the accelerated drying process increases the shrinkage strain. The coupling effects are demonstrated by a numerical example.