• 제목/요약/키워드: Humidity control

검색결과 1,163건 처리시간 0.021초

중국 장백산의 습지성 진달래과 식물 분포와 생태적 특성 (Ecological Characteristics and Distribution of Marshy Ericaceae on Mt. Changbai in China)

  • 김영화;현영남;이성제;안영희
    • 한국환경과학회지
    • /
    • 제22권11호
    • /
    • pp.1421-1431
    • /
    • 2013
  • This study was conducted for clarifying distribution and characteristics of marshy Ericaceae plants on Mt. Changbai in China. The marshy Ericaceae plants in wetland of Mt. Changbai were investigated on about 1400 m altitude. This region is various developmental wetlands and vegetation mixture of needle-leaf trees and broad-leaf trees. This region also is start point of the coniferous forest zone in Mt. Changbai. As results of these researches, L. palustre var. diversipilosum and L. palustre var. decumbens populations were investigated in Larix olgensis var. amurensis community. R. lapponicum subsp. parvifolium var. parvifolium community appeared as a typical community. Environmental conditions of L. palustre var. diversipilosum and L. palustre var. decumbens populations' habitats are more soil humidity and shade condition. R. lapponicum subsp. parvifolium var. parvifolium community habitat, however, has more deposits and humidity condition. Therefore when the plants were cultivated, we should recognize the growth condition such as maintenance of humidity and control deposits. The flora of marshy Ericaceae species habitats was investigated as 28 families, 49 genera, 45 species, 14 variety, 1 forma, 1 sub-species, and total 61 taxa.

원자힘 현미경의 습도 조절에 의한 그래핀 국소 산화 (Humidity dependent size control of local anodic oxidation on graphene using Atomic Force Microscope)

  • 고석남;이성준;손맹호;안도열;이승웅
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 2014년도 추계학술대회
    • /
    • pp.226-227
    • /
    • 2014
  • We demonstrate nanoscale local anodic oxidation (LAO) patterning on few layer graphene using atomic force microscope (AFM) at room temperature and normal atmosphere. We focus on the humidity dependency in nanoscale oxidation of graphene. The relationship between the oxidation size and the AFM setting values, such as set point, tip speed, and humidity are observed. By changing these values, proper parameters were found to produce features on demand size. This technique provides an easy way to form graphene oxide lithography without any chemical resists. We have obtained oxidation size down to 50-nm with 6-nm-height oxide barrier line with $0.1{\mu}m/s$ tip scanning speed and micrometer size symbols on a graphene flake. We attribute the bumps to local anodic oxidation on graphene surface and combination of oxygen ions into the graphene lattice.

  • PDF

Behavior of UHPC-RW-RC wall panel under various temperature and humidity conditions

  • Wu, Xiangguo;Yu, Shiyuan;Tao, Xiaokun;Chen, Baochun;Liu, Hui;Yang, Ming;Kang, Thomas H.K.
    • Advances in concrete construction
    • /
    • 제9권5호
    • /
    • pp.459-467
    • /
    • 2020
  • Mechanical and thermal properties of composite sandwich wall panels are affected by changes in their external environment. Humidity and temperature changes induce stress on wall panels and their core connectors. Under the action of ambient temperature, temperature on the outer layer of the wall panel changes greatly, while that on the inner layer only changes slightly. As a result, stress concentration exists at the intersection of the connector and the wall blade. In this paper, temperature field and stress field distribution of UHPC-RW-RC (Ultra-High Performance Concrete - Rock Wool - Reinforced Concrete) wall panel under high temperature-sprinkling and heating-freezing conditions were investigated by using the general finite element software ABAQUS. Additionally, design of the connection between the wall panel and the main structure is proposed. Findings may serve as a scientific reference for design of high performance composite sandwich wall panels.

습도 조건에 따른 합판의 함수율 변화와 함수율에 따른 합판의 열전도율 변화에 대한 실험적 연구 (An Experimental Study of the Variation of the Moisture Content of Plywood and the Change of Thermal Conductivity of Plywood According to its Moisture Content)

  • 이진성;김경수;강중규;유창혁
    • 한국해양공학회지
    • /
    • 제32권5호
    • /
    • pp.367-371
    • /
    • 2018
  • Plywood is one of the important materials in LNG cargo containment systems, and, due to the characteristics of the wood, its properties vary greatly depending on the humidity conditions in the storage facility. Due to the distribution environment of plywood, there is a high probability of long-term exposure to the domestic seasonal environment. Considering an environment in which the humidity changes greatly according to the seasons in Korea and the characteristics of the wood, it is necessary to acquire data on changes in the characteristics of the plywood for accurate quality control. In this study, the moisture content of plywood was determined experimentally to reflect the seasonal environmental conditions of shipyards in Korea. A noticeable change in the thermal conductivity was confirmed experimentally.

Prototyping an embedded wireless sensor for monitoring reinforced concrete structures

  • Utepov, Yelbek;Khudaibergenov, Olzhas;Kabdush, Yerzhan;Kazkeev, Alizhan
    • Computers and Concrete
    • /
    • 제24권2호
    • /
    • pp.95-102
    • /
    • 2019
  • Current article proposes a cheap prototype of an embedded wireless sensor to monitor concrete structures. The prototype can measure temperature and relative humidity concurrently at a controlled through smartphone time interval. It implements a maturity method to estimate in-place concrete strength, which is considered as an alternative for traditional shock impulse method and compression tests used in Kazakhstan. The prototype was tested and adequately performed in the laboratory and field conditions. Tests aimed to study the effect of internal and ambient temperature and relative humidity on the concrete strength gain. According to test results revealed that all parameters influence the strength gain to some extent. For a better understanding of how strongly parameters influence the strength as well as each other, proposed a multicolored cross-correlation matrix technique. The technique is based on the determination coefficients. It is able to show the value of significance of correlation, its positivity or negativity, as well as the degree of inter-influence of parameters. The prototype testing also recognized the inconvenience of Bluetooth control due to weakness of signal and inability to access several prototypes simultaneously. Therefore, further improvement of the prototype presume to include the replacement of Bluetooth by Narrow Band IoT standard.

기후요소가 온열질환자수에 미치는 영향 (The Effects of Climate Elements on Heat-related Illness in South Korea)

  • 정다은;임숙향;김도우;이우섭
    • 한국기후변화학회지
    • /
    • 제7권2호
    • /
    • pp.205-215
    • /
    • 2016
  • The relationship between the climate and the number of heat-related patients in South Korea was analysed in this study. The number of the patients was 1,612 during the summer 2011 to 2015 according to the Heat-related Illness (HRI) surveillance system. The coefficient of determination between the number of the patients and the daily maximum temperature was higher than that between the number of them and the other elements: the daily mean/minimum temperature and relative humidity. The thresholds of daily maximum and minimum temperature in metropolitan cities (MC) were higher than those in regions except for MC (RMC). The higher the maximum and minimum temperature became, the more frequently the heat-related illness rate was observed. The regional difference of this rate was that the rate in RMC was higher than that in MC. Prolonged heat wave and tropical night tended to cause more patients, which continued for 20 days and 31 days of maximum values, respectively. On the other hand, the relative humidity was not proportional to the number of the patients which was rather decreasing at over 70% of relative humidity.

드레스룸 표면 결로 발생 예측 모델 개발 - 노달 모델과 데이터 기반 모델 - (Development of Prediction Models of Dressroom Surface Condensation - A nodal network model and a data-driven model -)

  • 주은지;이준혜;박철수;여명석
    • 대한건축학회논문집:구조계
    • /
    • 제36권3호
    • /
    • pp.169-176
    • /
    • 2020
  • The authors developed a nodal network model that simulates the flow of moist air and the thermal behavior of a target area. The nodal network model was enhanced using a parameter estimation technique based on the measured temperature, humidity, and schedule data. However, the nodal model is not good enough for predicting humidity of the target space, having 55.6% of CVRMSE. It is because re-evaporation effect could not be modeled due to uncertain factors in the field measurement. Hence, a data-driven model was introduced using an artificial neural network (ANN). It was found that the data-driven model is suitable for predicting the condensation compared to the nodal model satisfying ASHRAE Guideline with 3.36% of CVRMSE for temprature, relative humidity, and surface temperature on average. The model will be embedded in automated devices for real-time predictive control, to minimize the risk of surface condensation at dressroom in an apartment housing.

멸균물품의 유효기간에 관한 연구: 포장재와 보관환경을 중심으로 (Validity Periods of Sterilization Products: Focus on Packing Materials and Storage Environments)

  • 박현희;이광옥
    • 근관절건강학회지
    • /
    • 제30권3호
    • /
    • pp.263-272
    • /
    • 2023
  • Purpose: The aim of this study was to provide a scientific basis for shelf life and re-establish the shelf life in a hospital environment by investigating the validity periods of various packaging materials. Methods: We selected six departments to store sterilized items, prepared 482 sterilized items, and stored them for 12 months. Each sample was tested using a microbiological culture in the laboratory every two weeks. When the result was positive, the sample was considered contaminated. The temperature and relative humidity were measured using an automatic control system to investigate the storage environment during the study period. Results: Except for two samples, which were positive in the 22nd and 28th weeks, 480 samples were negative. The temperature and relative humidity of the sample storage area were measured every week. The annual average temperature was 23.6±1.6℃, and the mean relative humidity was 35.1±15.2%. The cabinets used in this study were the two-open and four-closed types. Conclusion: This study confirmed the validity of the expiration date in a hospital environment. Based on the results, the nonwoven fabric remained sterile for more than nine months. No case of contamination of the paper-plastic pouch packaging was observed, owing to the microbial culture for two months.

새송이버섯 재배사의 환경요인 분석 (Analysis of Environment Factors in Pleurotus eryngii Cultivation House)

  • 윤용철;서원명;이현우
    • 생물환경조절학회지
    • /
    • 제12권4호
    • /
    • pp.200-206
    • /
    • 2003
  • 본 연구에서는 새송이버섯을 중심으로 품질향상 및 생산량 증대를 목적으로 적정재배사의 구조설계 및 환경조절 기술을 개발 ${\cdot}$ 보급하기 위하여 서부 경남지역의 새송이버서 재배농가를 중심으로 재배사의 구조 및 환경조절장치를 조사하였다. 또한 환경조절실태를 조사하기 위하여 농가에 위치한 2개 동의 상업용 버섯재배사를 대상으로 환경인자를 계측하였다. 본 연구에서는 이들 연구 중 환경인자 계측결과를 분석하였다. 실험기간동안 외기온은 평년과 큰 차이가 없었으나, 재배사 내부의 온도가 설정온도보다 다소 낮게 유지되고 있기 때문에 진주지역의 동절기 최저 외기온을 고려하면, 난방기 용량이나 배관에 문제가 있는 것으로 판단되었다. 난방 시 상하 재배상간 온도차가 최대 2~3$^{\circ}C$ 정도로 높게 나타나 높이별 온도분포가 일정하지 않을 뿐만 아니라 또 최하단 재배상에서 균상이 지나치게 건조하게 되어 버섯의 발이가 잘 되지 않는 등의 문제도 종종 발생하였다. 그리고 상대습도는 재배 기간 동안 변화가 심하고, 평균상대습도도 일반적으로 알려져 인ㅅ는 것보다 발이기나 생육기에 모두 다소 높거나 낮게 유지되는 등 습도유지가 일정하지 않은 것을 알 수 있었다. 탄산가스 농도도 권장농도보다 높게 유지되는 등이 문제가 있었다. 조도는 권장조도보다 전반적으로 낮게 유지되고 있음을 알 수 있었다. 또한 버섯의 수확량은 평균적으로 병당 약 67~85 g 정도로 나타났고, 총 판매금액은 균상 구입비의 2배 이사인 것으로 조사되었다.

시뮬레이션을 통한 바닥복사냉방 시스템의 공급유량 및 냉수온도 제어에 관한 연구 (A Study on the Control of Water Flow and Water Temperature in the Radiant Cooling System through Simulations)

  • 김용이;윤혜림;여명석
    • 설비공학논문집
    • /
    • 제13권6호
    • /
    • pp.532-540
    • /
    • 2001
  • The objectives of this study are to analyze the control variables according to condensation occurrence, to find the range in floor surface temperature and frequency of condensation, and to evaluate the control methods through simulations when the radiant heating system is used for cooling. Through the simulation analysis the control methods such as on/off control, variable flow control and outdoor reset with indoor temperature feedback control are evaluated and compared. The results show that the lowest floor surface temperature is around $23^{\circ}C$, the surface condensation can be prevented by controlling indoor humidity within 20g/kg(DA0, and that outdoor reset with indoor temperature feedback control is more appropriate than on/off control and variable flow control with regard to prevention of the condensation and thermal comfort.

  • PDF