• Title/Summary/Keyword: Humidity control

Search Result 1,153, Processing Time 0.03 seconds

The Study of Environment Change for Iron Antiquities after Excavation (고대 출토 철제 유물의 환경 변화에 따른 고찰)

  • Moon, Whan-Suk;Kim, Byoung-Gun;Wi, Koang-Chul;Hwang, Jin-ju
    • 보존과학연구
    • /
    • s.14
    • /
    • pp.35-44
    • /
    • 1993
  • The way of prevention for the continuous corrosion progress in iron antiquities after excavation and conservation treatment have been studied. The corrosion occuring have been found the oxidation of ferrous ions in the presence of chloride. The consideration to control the activity of chloride is important of controling relative humidity for the stable environment of the storage. One of the method that keeps archeological iron antiquities recommend the storage of special vinyl film(poly-vinyl alcohol film) with silica gel to control the relative humidity. Although this method is not permanent, it's very well efficiency of economy and convenience at present.

  • PDF

Analysis of Environment Control Capability Wintering Beehouse in Young Area (용인지역 저온양봉사의 환경조절성능 분석(농업시설))

  • 이석건;김란숙;이현우;이종원
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.302-307
    • /
    • 2000
  • The wintering honey bee chambers were constructed and inside environment factors were analyzed to provide high technology for efficient wintering of honeybee colonies. As a result of this study, inside air temperature of yongin chamber under the wide range of outside temperature condition was found to be appropriated for wintering of bee, and inside temperature of beehive was about 2$^{\circ}C$ higher than the air temperature in the chamber. The fan operation schedule did not control the high temperature down properly in the chamber, It was necessary to find a new fan operation schedule to be able to provide the optimum temperature for wintering honey bee colonies. inside humidity variation of Yongin chamber was very much depended on outside humidity.

  • PDF

Effectiveness of Ventilation Control in a Dry Room with a Heat and Moisture Source

  • Lee, Kwan-Soo;Lim, Kwang-Ok;Ahn, Kang-Ho;Jung, Young-Sick
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.9 no.4
    • /
    • pp.1-9
    • /
    • 2001
  • The temperature and moisture distributions in a dry room with a heat and moisture source -i.e., workers- are studied numerically by using a standard $k-\varepsilon$ turbulence model. In order to evaluate the effectiveness of heat and moisture ventilation inside the room, the heat removal capacity and the moisture exhaust efficiency are introduced. The effectiveness of ventilation control is analyzed by evaluating the temperature and humidity distributions in the room quantitatively. It is found that the mean absolute humidity inside the room is almost constant regardless of the models and the heat generation rates in this study range. This results from the fact that the moisture generation by the workers was relatively small. Through the modification of the design, 40% improvement in critical decay time was achieved.

  • PDF

The Effects of Humidity Control Capability and Removal Toxic Gases of Activated Carbon to the Display Environment of Cultural Properties (문화재 전시 공간에 대한 활성탄의 습도 제어 및 유해가스 제거 효과 연구)

  • Kang, Sae Rom;Choi, Yu Ri;Kang, Dai Ill
    • Journal of Conservation Science
    • /
    • v.30 no.2
    • /
    • pp.235-241
    • /
    • 2014
  • In this study, we are trying to verify humidity control capability of the exhibition environment of cultural property by measuring adsorption and desorption performance, the control ability of harmful substances by the adsorption experiments of harmful gases. In the experiment of adsorption and desorption performance, in the low humidity area, Artsorb desorbed overwhelmingly more than activated carbon whereas activated carbon absorbed more. Adsorption speed was faster slightly in Artsorb absorption speed was similar in both. In the middle humidity area, absorption by artsorb was slightly more and desorption was similar in both so characteristic of Artsorb didn't appear. Also, Adsorption speed was faster in activated carbon but in the process of desorption, the speed of Artsorb was faster. In adsorption experiment of harmful substances, the concentration in the environment with activated carbon was lower than one with Artsorb, but the difference appeared small. And as a result of observation of the difference in concentration due to adsorption of harmful gas by the change in the metal specimen, the most change was shown in lead specimen and the color difference between the lead specimens of the activated carbon and Artsorb appeared greatly.

The Cooling Effect of Fog Cooling System as Affected by Air Exchange Rate in Natural Ventilation Greenhouse (자연환기 온실의 환기회수에 따른 포그냉방시스템의 냉방효과)

  • 김문기;김기성;권혁진
    • Journal of Bio-Environment Control
    • /
    • v.10 no.1
    • /
    • pp.10-14
    • /
    • 2001
  • The cooling effect of a fog cooling system has a close relationship to air flow and relative humidity in the greenhouse. From the VETH chart for cooling design, a cooling efficiency can be improved by means of increasing the air exchange rate and the amount of sprayed water. In the no shading experimental greenhouse by time control, when average air exchange rate was 0.77 times.min$^{-1}$ and spray water amount was 2,009g, inside temperature of the greenhouse was 31$^{\circ}C$ that was almost close to outside temperature and cooling efficiency was 82%. When average air exchange rate was close to temperature of the greenhouse that was no cooling and 70% shading greenhouse environment. When average air exchange rate was 2.59times.min$^{-1}$ , spray water amount was 2,009g and shading rate was 70%, inside relative humidity of the greenhouse was increased was 2,009 g and shading rate was 70%, inside relative humidity of the greenhouse was increased, but temperature was not decreased. When average air exchange rate was 2.33 times.min$^{-1}$ and spray water amount was 2,009g, inside temperature was 31.4 and at that time maximum wind speed at the air inlet of greenhouse was 1.9m.s$^{-1}$ . Since time controller sprayed amount of constant water at a given interval, some of sprayed water remained not to be evaporated, which increased relative humidity and decreased cooling efficiency. Because the shading screen prevented air flow in the greenhouse, it also caused the evaporation efficiency to be decreased. In order to increase cooling efficiency, it was necessary to study on controling by relative humidity and air circulation in the greenhouse.

  • PDF

Effects of the Open Level of the Side Window on the Control of the Temperature and Relative Humidity in the Fog Cooling Greenhouse (포그냉방 온실에서 측창개폐수준이 온습도 제어에 미치는 영향)

  • Kim, Young-Bok;Sung, Hyun-Soo;Yun, Nam-Kyu;Lee, Si-Young;Hwang, Seung-Jae;Kim, Hyeon-Tae;Lee, Jang-Pyung
    • Journal of agriculture & life science
    • /
    • v.45 no.6
    • /
    • pp.265-278
    • /
    • 2011
  • Effects of the open level of the side window were studied to control the temperature and relative humidity in the fog cooling greenhouse. The greenhouse was cooled by air atomizing spray nozzles of the air and water two-fluid process. The control process includes the measuring of environmental variables, setting and coding of the water balance equations and heat balance in greenhouse, calculating of the roof window open and spray water, and operating of the motor and pump. The target temperature and relative humidity were set at $28^{\circ}C$, 75%, respectively. The three modes of the side window open level were 0%, 50% and 100%. The average dry bulb temperatures of the inside air were 28.2, 27.2 and $26.3^{\circ}C$, respectively and their standard deviation was ranged from $0.4^{\circ}C$to $0.8^{\circ}C$. Also the relative humidity of the 0% mode was the best controlled one with the average of 76.3% and the standard deviation of 2.1%.

Intelligent AQS System with Artificial Neural Network Algorithm and ATmega128 Chip in Automobile (신경회로망 알고리즘과 ATmega128칩을 활용한 자동차용 지능형 AQS 시스템)

  • Chung Wan-Young;Lee Seung-Chul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.6
    • /
    • pp.539-546
    • /
    • 2006
  • The Air Quality Sensor(AQS), located near the fresh air inlet, serves to reduce the amount of pollution entering the vehicle cabin through the HVAC(heating, ventilating, and air conditioning) system by sending a signal to close the fresh air inlet door/ventilation flap when the vehicle enters a high pollution area. The sensor module which includes two independent sensing elements for responding to diesel and gasoline exhaust gases, and temperature sensor and humidity sensor was designed for intelligent AQS in automobile. With this sensor module, AVR microcontroller was designed with back propagation neural network to a powerful gas/vapor pattern recognition when the motor vehicles pass a pollution area. Momentum back propagation algorithm was used in this study instead of normal backpropagation to reduce the teaming time of neural network. The signal from neural network was modified to control the inlet of automobile and display the result or alarm the situation in this study. One chip microcontroller, ATmega 128L(ATmega Ltd., USA) was used for the control and display. And our developed system can intelligently reduce the malfunction of AQS from the dampness of air or dense fog with the backpropagation neural network and the input sensor module with four sensing elements such as reducing gas sensing element, oxidizing gas sensing element, temperature sensing element and humidity sensing element.

A Study on the Indoor Comfort Control By Smart Comfort Algorithm (스마트 쾌적 알고리즘을 적용한 실내 쾌적 제어에 대한 연구)

  • Yoon, Seok-Am;Lee, Jeong-Il
    • Journal of IKEEE
    • /
    • v.19 no.4
    • /
    • pp.603-609
    • /
    • 2015
  • Thermal comfort is one of the fundamental aspects of indoor environmental quality and it is strongly related to occupant satisfaction and energy used in building. In this paper, we proposes smart comfort algorithm that save energy and provide a pleasant and comfortable environment for workers by the indoor comfort conditions(Predictive Mean Vote) detection and controlling the temperature and humidity, air flow. Simulation results, heating and cooling control of the thermal comfort control can be compared with the existing general air conditioners reduces the power of 0.5kW and indoor comfort can be maintained. Also, It showed a 49.2% improvement in the light by lighting control algorithm.

Effects of Storage Humidity on the Sprout Growth of Mulberry Cut Twigs (뽕나무 절지의 저장 습도가 새싹의 생장에 미치는 영향)

  • Bae, Jong-Hyang;Cho, Ja-Yong;Kim, Byoung-Woon;Jang, Hong-Gi;Heo, Buk-Gu
    • Journal of Bio-Environment Control
    • /
    • v.17 no.1
    • /
    • pp.20-25
    • /
    • 2008
  • This study was conducted to develop the industrial producing technology of sprout vegetables using the cut twigs of woody plants. We have cut the twigs of wild mulberry tree on 13 April,2006 to examine the sprouting rate as affected by the storage conditions on relative humidity of $40{\sim}50%$ and $80{\sim}90%$ under $4{\sim}6^{\circ}C$ temperature. And we have also investigated the sprouting growth following those storage period of twigs cut with $1{\sim}3$ buds. The longer storage periods, the less survival rate of wild mulberry twigs cut. The sprouting rate of cut twigs gathered on the day which had not stored at low temperature was 97.4%. And The sprouting rate at the relative humidity of $40{\sim}50%$ after storing at low temperature for 122 days were 34.2%, and that of at $80{\sim}90%$ relative humidity was 85.7%. The longer storage periods, the more the number, length and width of sprouts. Therefore, the twigs of a wild mulberry trees cut with $1{\sim}3$ buds were able to produce the sprout vegetables under the condition of temperature $4{\sim}6^{\circ}C$ and relative humidity $80{\sim}90%$.

Impact of a Large Water Control on Environment of Surrounding Cultural Heritage (대규모 치수(治水) 사업이 주변 문화재 환경에 미치는 영향)

  • Jeong, Seon Hye;Kim, Si Hyun;Han, Ye Bin;Lee, Min Young;Lee, Hyun Ju;Chung, Yong Jae
    • Journal of Conservation Science
    • /
    • v.32 no.3
    • /
    • pp.395-402
    • /
    • 2016
  • The impact of a large water control project on surrounding environment(temperature and relative humidity, precipitation, wind speed, present weather and visibility) was monitored. The survey have targeted on Silleuksa temple which is located in the waterside. The number of foggy days emerged as an environmental factor that can cause damage to cultural heritage. Under construction of weir since 2011, monthly relative humidity of Yeoju and Icheon was dropped to 9.6%. It depends on decrease in the number of raining days and precipitation of each year. Silleuksa temple is contiguous to Namhan River and only 100 m away from the waterside. Average wind speed is 0.5 m/s. Silleuksa has a site environmental factors which is often foggy. The number of foggy days of Silleuksa temple declined to 53 days soon after weir's completion. In case of fog, relative humidity of outside was higher than that of outside and inside of Josadang Shrine. Relative humidity difference of outside and inside of Josadang Shrine was 5.4% on average. Relative humidity of the number of foggy days is 6.3% higher on average than that of fine days. The width and dimensions of Namhan River increased by 1.45 times after weir's construction. It can change the number of foggy days. A long-term monitoring is positively necessary on fog occurrence and relative humidity.