• Title/Summary/Keyword: Humidity Sensor

Search Result 641, Processing Time 0.028 seconds

Humidity and Temperature Response Characteristics of Optical Fiber Dislocation Fusion Sensor Coated with Graphene Quantum Dots

  • Dailin Li;Xiaodan Yu;Ning Wang;Wenting Liu;Shiqi Liu;Liang Xu;Dong Fang;Huapeng Yu
    • Current Optics and Photonics
    • /
    • v.7 no.5
    • /
    • pp.504-510
    • /
    • 2023
  • An optical fiber dislocation fusion humidity sensor coated with graphene quantum dots is investigated. A Mach-Zehnder interferometer is fabricated with three dislocated single-mode fibers with graphene quantum dots coating humidity-sensitive materials. Humidity response experiments showed a good linear response and high sensitivity with easy fabrication and low-cost materials. From 22% to 98% RH, the humidity response sensitivity of the sensor is 0.24 dB/% RH, with 0.9825 linearity. To investigate the cross-response of humidity and temperature, temperature response experiments are conducted. From 30 ℃ to 70 ℃, the results showed 0.02 dB/℃ sensitivity and 0.9824 linearity. The humidity response experimental curve is compared with the temperature experimental curve. The big difference between humidity sensitivity and temperature sensitivity is very helpful to solve the cross-response of humidity and temperature. The influence of temperature fluctuations in humidity measurements is not obvious.

Humidity-Sensitive Characteristics of ${MgCr_2}{O_4}$-Based Thin-Film Humidity Sensors (${MgCr_2}{O_4}$계 박막 습도센서의 감습 특성)

  • 편영미;김태송;유광수
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.6
    • /
    • pp.537-544
    • /
    • 2000
  • Thin-film humidity sensor which TiO2, ZrO2, or CeO2 was added to MgCr2O4-based materials, respectively, were fabricated on the alumina substrate by using a resistant-heating evaporator. Thin films were approximately 2${\mu}{\textrm}{m}$ in grain size and shwoed porous microstructures. The resistance of the sensor decreased with increasing the relative humidity and the MgCr2O4-TiO2 sensor had the best humidity-sensing characteristics (linearity in relative humidity versus resistance).

  • PDF

MEM Temperature and Humidity Network Sensor for Wire and Wireless Network (유무선 통신용 MEMS 온습도 네트워크 센서)

  • Jung, Woo-Chul;Cha, Boo-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.360-361
    • /
    • 2006
  • This paper describes a wire and wireless network sensor for temperature and humidity measurements. The network sensor comprises PLC(Power Line Communication) and RF transmitter(433MHz) for acquiring an internal (on-board) sensor signal, and measured data is transmitted to a main processing unit. The network sensor module is consist of MEMS sensor, 10-bit A/D converter, pre-amp., gain-amp., ADUC812 one chip processor and PLC/RF transmitting unit. The temperature and humidity sensor is based on MEMS piezoelectric membrane structure and is implemented by using dual function sensor for smart home and smart building.

  • PDF

Plasma Process Effect and Selectivity Characteristics of Carbon Nanotube Film Humidity Sensor (CNT 습도센서의 플라즈마처리 효과와 선택성 특성)

  • Park, Chan-Won
    • Journal of Industrial Technology
    • /
    • v.33 no.A
    • /
    • pp.67-72
    • /
    • 2013
  • CNT(carbon nanotube) humidity sensors with plasma treated electrodes exhibit a much faster response time and a higher sensitivity to humidity, compared to untreated CNT and porous Cr electrodes. These results may be partially due to their percolated pore structure being more accessible for water molecules and for expending the diffusion of moisture to the polyimide sensing film, and partially due to the oxygenated surface of CNT films. This paper shows a plasma process effect and selectivity characteristics of CNT film humidity sensor.

  • PDF

Evaluation of Electrospun TiO2/PVP/LiCl Nanofiber Array for Humidity Sensing (전기방사를 이용한 TiO2/PVP/LiCl 나노섬유 습도 센서의 제작과 평가)

  • Ryu, Hyobong;Kim, Bumjoo;Kwon, Hyukjin Jean;Heo, Joonseong;Lim, Geunbae
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.1
    • /
    • pp.42-45
    • /
    • 2014
  • Recently, tremendous application utilizing electrospun nanofibers have been actively reported due to its several advantages, such as high surface to volume ratio, simple fabrication and high-throughput manufacturing. In this paper, we developed highly sensitive and consistent nanofiber humidity sensor by electrospinning. The humidity sensor was fabricated by rapid electrospinning (~2 sec) $TiO_2$/PVP/LiCl mixed solution on the micro-interdigitated electrode. In order to evaluate the humidity sensing performances, we measured current response using DC bias voltage under various relative humidity levels. The results show fast response / recovery time and marginal hysteresis as well as long-term stability. In addition, with the aid of micro-interdigitated electrode, we can reduce a total resistance of the sensor and increase the total reaction area of nanofibers across the electrodes resulting in high sensitivity and enhanced current level. Therefore, we expect that the electrospun nanofiber array for humidity sensor can be feasible and promising for diverse humidity sensing application.

Passive Telemetry Capacitive Humidity Sensor System using RLSE Algorithm (RLSE알고리즘을 이용한 원격 정전용량형 습도 센서 시스템)

  • Kyung-Yup Kim;Joon-Tark Lee
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.4
    • /
    • pp.569-576
    • /
    • 2004
  • In this paper, passive telemetry capacitive humidity sensor system using a RLSE(Recursive Least Square Estimation) technique is proposed. To overcome the problem like power limits and complications that general passive telemetry sensor system including IC chip has, the principle of inductive coupling is applied to model the sensor system. Specially. by applying the forgetting factor we show that the accuracy of its estimation can be improved even in the case of time varying parameter and also the convergence time can be reduced.

Fabrication and Characteristics of Multi-functional Sensor System (다기능 센서 시스템의 제작 및 동작 특성)

  • Jung, Jae-Eop;Lee, Hyo-Ung;Lee, Sung-Pil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.368-371
    • /
    • 2003
  • The humidity sensors with a stable characteristics and gas sensors operating at room temperature have been fabricated, and a multi-functional sensor system which has gas sensor, humidity sensor, temperature sensor and control circuit has been applied to the microwave oven system. For a suitable cooking state, the humidity sensors was more applicable to heating and defrosting condition than gas sensors, however, the dynamic characteristics of gas sensors were obtained in the easy burning food such as pop corn.

  • PDF

Effects of Temperature and Humidity on NDIR CO2 Gas Sensor (비분산 적외선 이산화탄소 가스센서 특성의 온·습도 영향)

  • Kim, JinHo;Yi, SeungHwan
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.3
    • /
    • pp.179-185
    • /
    • 2017
  • This article describes the characteristics of nondispersive infrared carbon dioxide gas sensor according to the temperatures and humidifies. In this researches, a thermopile sensor that included application-specific integrated circuit (ASIC) was used and the White-cell structure was implemented as an optical waveguide. The developed sensor modules were installed in gas chamber and then the temperature of gas chamber has been increased from 283 K to 313 K with 10K temperature step. In order to analyze the effects of humidity levels, the relative humidity levels were changed from 30 to 80%R.H. with small humidifier. Then, the characteristics of sensor modules were acquired with the increment of carbon dioxide concentrations from 0 to 2,000 ppm. When the initial voltages of sensors were compared before and after humidifying the chamber at constant temperature, the decrements of the output voltages of sensors are like these: 9mV (reference infrared sensor), 41 mV (carbon dioxide sensor), 2 mV (temperature sensor). With the increment of ambient temperature, the averaged output voltage of carbon dioxide sensor was increased 19 mV, however, when the humidity level was increased, it was decreased 14mV. Based upon the experimental results, the humidity effect could be alleviated by the increment of temperature, so the effects of humidity and temperature could be only compensated by the ambient temperature itself. The estimated carbon dioxide concentrations showed 10% large errors below 200 ppm, however, the errors of the estimations of carbon dioxide concentrations were less than ${\pm}5%$ from 400 to 2,000 ppm.

A Resistive-Type Humidity Sensor Using PMMA Thin Film (PMMA를 이용한 저항형 습도감지소자)

  • Lee, Sung-Pil;Rim, Jae-Young;Yoon, Yeo-Kyoung
    • Journal of Sensor Science and Technology
    • /
    • v.1 no.2
    • /
    • pp.125-130
    • /
    • 1992
  • A resistive-type humidity sensors have been fabricated using cross-linked PMMA thin film as sensing material and their humidity characteristics have been investigated. The sensor coated of the cross-linked PMMA with PVA exhibited largely variation of resistance by increase of relative humidity and less than 3% of hysteresis. Furthermore, the fabricated sensor exhibited superior long-term stability. The response time of the PMMA humidity sensor was about 7 min. for adsorption and about 5 min. for desorption respectively.

  • PDF

A Highly Sensitive Humidity Sensor Using a Modified Polyimide Film

  • Kim, Yong-Ho;Lee, Joon-Young;Kim, Yong-Jun;Kim, Jung-Hyun
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.4 no.2
    • /
    • pp.128-132
    • /
    • 2004
  • This paper presents the design, fabrication sequence and measurement results of a highly sensitive capacitive-type humidity sensor using a polyimide film without hydrophobic elements. The structure of the humidity sensor is MIM (metalinsulator-metal). For a high sensitivity, a modified aromatic polyimides as a moisture absorbing layer has been synthesized instead of using general polyimides containing hydrophobic elements. The polyimide film was obtained by synthesizing and thermally polymerizing polyamic acid composed of m-pyromellitic dianhydride, phenelenediamine and dimethylacetamide. Characteristics of fabricated sensors which include sensitivity, hysteresis and stability have been measured. The measurement result shows the percent normalized capacitance change of 0.37/%RH over a range from 10 to 90%RH, hysteresis of 0.77% over the same %RH range and maximum drift of 0.25% at 50%RH. The result shows that the developed humidity sensor can be applied to evaluate a hermeticity of various sensors and actuator systems as well as micro packages.