• Title/Summary/Keyword: Humid-air regeneration

Search Result 7, Processing Time 0.019 seconds

An Experimental Study of the Effect of Regeneration Area Ratio on the Performance of Small-Sized Dehumidification Rotor for Residential Usage (재생 면적비가 가정용 소형 제습로터의 성능에 미치는 영향에 관한 실험적 연구)

  • Kim, Nae-Hyun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.5
    • /
    • pp.277-282
    • /
    • 2015
  • During hot and humid weather, air-conditioners consume a large amount of electricity due to the large amount of latent heat. Simultaneous usage of a dehumidifier may reduce latent heat and reduce electricity consumption. In this study, dehumidification performance was measured for a small-sized dehumidification rotor made of inorganic fiber impregnated with metallic silicate within a constant temperature and humidity chamber. Regeneration to dehumidification depends on ratio, rotor speed, room temperature, regeneration temperature, room relative humidity and frontal velocity to the rotor. Results demonstrate an optimum area ratio (1/2), rotor speed (1.0 rpm), and regeneration temperature ($100^{\circ}C$) to achieve a dehumidification rate of 0.0581 kg/s. As the area ratio increases, the optimum rotation speed and the optimum regeneration temperature also increase. Above the optimum rotor speed, incomplete regeneration reduces dehumidification. Above the optimum regeneration temperature, increased temperature variation between regeneration and dehumidification reduces dehumidification. Dehumidification rate also increases with an increase of relative humidity, dehumidification temperature and flow velocity into the rotor.

Research on the Performance of Regenerator using Hot Water from Solar Water Heater(1st paper : On the Effect of Solution Temperature to Regeneration Rate) (태양열 온수기를 이용한 다목적 공조시스템의 재생효율에 관한 연구(제1보 액체흡수제 온도가 재생량에 미치는 영향))

  • Woo, Jong-Soo;Choi, Kwang-Hwan
    • Journal of the Korean Solar Energy Society
    • /
    • v.24 no.1
    • /
    • pp.53-61
    • /
    • 2004
  • Absorption potential of desiccant solution significantly decreases after absorbing moisture from humid air, and a regeneration process requires a great amount of energy to recover absorption potential of desiccant solution. In an effort to develop an efficient solar water heater, this study examines a regeneration process using hot water obtained from solar water heater to recover absorption potential by evaporating moisture in the liquid desiccant. In this paper, a solar absorption dehumidifying system with solar water heater is suggested to save the electricity for operating an air conditioner. LiGl(lithium chloride) solution was adopted as a liquid desiccant in the proposed system, and hot water obtained from the solar water heater was used for regenerating the liquid desiccant. As a result, it was clear that the dilute LiCl solution could be regenerated by hot water, and the regeneration rate depends mostly on temperature level of liquid desiccant. The regeneration rates were about 2.4kg/h with $40^{\circ}C$, 4.0kg/h with $50^{\circ}C$, and 6.2kg/h with $60^{\circ}C$ of hot water respectively.

Response Surface Approach to Design Optimization of Regenerator Using Hot Air Heated by Solar Collector (태양열 온풍 이용을 위한 재생기의 설계 최적화 모델에 관한 연구)

  • Woo, Jong-Soo;Choi, Kwang-Hwan;Yoon, Jeong-In
    • Journal of the Korean Solar Energy Society
    • /
    • v.23 no.3
    • /
    • pp.7-14
    • /
    • 2003
  • Absorption potential of desiccant solution significantly decreases after absorbing moisture from humid air, and a regeneration process requires a great amount of energy to recover absorption potential of desiccant solution. In an effort to develop an energy efficient regenerator, this study examines a regeneration process using hot air heated by solar radiation to recover absorption potential by evaporating moisture in liquid desiccant. More specifically, this study is aimed at finding the optimum operating condition of the regenerator by utilizing a well-established statistical tool, so-called response surface methodology(RSM), which may provide a functional relationship between independent and dependent variables. It is demonstrated that an optimization model to find the optimum operating condition can be obtained using the functional relationship between regeneration rate and affecting factors which is approximated on the basis experimental results.

Evaluation of Catalyst Deactivation and Regeneration Associated with Photocatalysis of Malodorous Sulfurized-Organic Compounds (악취유발 황화유기화합물질의 광촉매분해에 따른 촉매 비활성화와 재생 평가)

  • Jo, Wan-Kuen;Shin, Myeong-Hee
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.11
    • /
    • pp.965-974
    • /
    • 2009
  • This study evaluated the degradation efficiency of malodorous sulfurized-organic compounds by utilizing N- and Sdoped titanium dioxide under visible-light irradiation, and examined the catalyst deactivation and regeneration. Catalyst surface was characterized by employing Fourier-Transform-Infrared-Red (FTIR) spectra. The visible-light-driven photocatalysis techniques were able to efficiently degrade low-level dimethyl sulfide (DMS) and dimethyl disulfide (DMDS) with degradation efficiencies exceeding 97%, whereas they were not effective regarding the removal of high-level DMS and DMDS, with degradation efficiencies of 84 and 23% within 5 hrs of photocatalytic processes. As compared with DMS, DMDS which containes one more sulfur element revealed quick catalyst deactivation. Catalyst deactivation was confirmed by the equality between input and output concentrations of DMD or DMDS, the obsevation of no $CO_2$ generation during a photocatalytic process, and the FTIR spectrum peaks related with sulfur ion compounds, which are major byproducts formed on catalyst surfaces. The mineralization efficiency of DMS at 8 ppm, which was a peak value during a photocatalytic process, was calculated as 144%, exceeding 100%. The catalyst regenerated by high-temperature calcination exhibited higher catalyst recovery efficiency (53 and 58% for DMDS and DMS, respectively) as compared with dry-air and humid-air regeneration processes. However, even the calcined method was unable to totally regenerate deactivated catalysts.

Experimental Study on Heat and Mass transfer Coefficient Comparison Between Counterflow Types and Parallel in Packed Tower of Dehumidification System

  • Sukmaji, I.C.;Choi, K.H.;Yohana, Eflita;Hengki R, R.;Kim, J.R.
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.162-169
    • /
    • 2009
  • In summer electrical energy is consumed in very high rate. It is used to operate conventional air conditioning system. Hot and humid air can germinate mould spores, encourage ill health, and create physiological stress (discomfort). Dehumidifier solar cooling effect is the one alternative solution saving electrical energy. We use surplus heat energy in the summer, to get cooling effect and then to get human reach to comfort condition. These devices have two system, dehumidifier and regeneration system. This paper will be focus in dehumidifier system. Dehumidifier system use for absorbing moisture in the air and decreasing air temperature. When the liquid desiccant as strong solution contact with the vapor air in the packed tower, it works. The heat and mass transfer performances of flow pattern in the packed tower of dehumidifier are analyzed and compared in detail. In this experiment was introduced, the flow patterns are parallel flow and counter flow. The performance of these flow patterns will calculate from air side. Which is the best flow pattern that gave huge mass transfer rate? The proposed dehumidifier flow pattern will be helpful in the design and optimization of the dehumidifier solar cooling system.

  • PDF

Study on the Performances of Air Flow Fate Effect on a Structured Packed Tower at Adiabatic Condition in a Liquid Lithium Chloride Cooling System

  • Bakhtiar, Agung;Choi, K.H.;Kim, J.R.
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.404-408
    • /
    • 2009
  • The liquid desiccant air-conditioning system has been proposed as an alternative to the conventional vapor compression cooling systems to control air humidity. The complete system of liquid desiccant air-conditioning system is consisted two main components those are humidifier (regeneration) and dehumidifier. Humidifier part is connected to the load when summer season which is the air condition is hot and humid have to be turned into comfort condition on human. This paper purpose is performances study of air flow rate effect on a structured packed tower on cooling and dehumidifier system using liquid lithium chloride as the desiccant. Experimental apparatus used in this present study is consisted of three components those are load chamber, packed tower and chiller. Load chamber’s volume is $40m^3$, and packed tower dimension is cubic with length 0.4m occupied with packed column. Totally, 15 experimental has done using 5 times repeat on each variable of air velocity that varying on 2m/s, 3m/s and 4m/s with other conditions are controlled. Air inlet initial temperature and relative humidity are set respectively on $30^{\circ}C$ and 52%, desiccant flow rate is 0.63 kg/s, desiccant temperature is $10^{\circ}C$ and desiccant concentration is 0.4. The result of this study shows that averagely, the moisture removal rate and the heat transfer rate are influenced by the air velocity. Higher air velocity will increase the heat transfer and decreasing the moisture removal rate. At adiabatic condition the air velocity of 2 m/s respectively is having the higher moisture removal rate acceleration then the air velocity of 3m/s and 4 m/s until the steady state condition.

  • PDF

Experimental Investigation on the Performance of Small-Sized Dehumidification Rotor for Residential Use (가정용 소형 제습로터의 성능에 대한 실험적 연구)

  • Han, Ji-Chao;Kim, Nae-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.4
    • /
    • pp.2344-2349
    • /
    • 2015
  • In Korea, summer is hot and humid, and air-conditioners consume too much electricity due to large amount of latent heat. Simultaneous usage of dehumidifier may reduce the latent heat and save the electricity. In this study, dehumidification performance was measured in a constant temperature and humidity chamber for a small-sized dehumdification rotor made of inorganic fiber impregnated with metallic silicate. Variables were rotor speed, room temperature, regeneration temperature, room relative humidity and frontal velocity to the rotor. Results showed that there existed optimum rotor speed (1.0 rpm), and optimum regeneration temperature ($100^{\circ}C$). Above the optimum rotor speed, incomplete regeneration is responsible for reduced dehumidification. Above the optimum regeneration temperature, increased temperature difference between regeneration and dehumidification process is responsible for reduced dehumidification. The amount of dehumidification also increases with the increase of relative humidity, dehumidification temperature and flow velocity into the rotor.