• Title/Summary/Keyword: Humic acid reduction

Search Result 28, Processing Time 0.028 seconds

Effects of Natural Organic Matter (NOM) on Cr(Ⅵ) reduction by Fe(II) (Fe(II)을 이용한 Cr(Ⅵ) 환원시 천연유기물의 영향)

  • 한인섭
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 1999.10a
    • /
    • pp.81-84
    • /
    • 1999
  • The aqueous geochemical characteristics of Cr(III) and Cr(Ⅵ) in environmental systems are very different from one another: Cr(Ⅵ) is highly soluble, mobile and toxic relative to Cr(III) Reduction of Cr(Ⅵ) to Cr(III) are beneficial in aquatic systems because of the transformation of a highly mobile and toxic species to one having a low solubility in water, thus simultaneously decreasing chromium mobility and toxicity. Fe(II) species are excellent reductants for transforming Cr(Ⅵ) to Cr(III), and in addition, keeping Cr(III) concentrations below the drinking water standard of 52 ppb at pH values between 5 and 11. Investigations of the effects of NOM on Cr(Ⅵ) reduction are for examining the feasibility of using ferrous iron to reduce hexavalent chromium in subsurface environments. Experiments in the presence of soils, however, showed that the solid phase consumes some of the reducing capacity of Fe(II) and makes the overall reduction kinetics slower. The soil components bring about consumption of the ferrous iron reductant. Particular attention is devoted to the complexation of Fe(II) by NOM and the subsequent effect on Cr(Ⅵ) reduction. Cr(Ⅵ) reduction rate by Fe(II) was affected by the presence of NOM (humic acid), The effects of humic acid was different from the solution pH values and the concentration of humic acid. It was probably due to the reactions between humic acid and Cr(Ⅵ), humic acid and Fe(II), and between Cr(Ⅵ) and Fe(II), at each pH.

  • PDF

Effect of Humic acid on the Distribution of the Contaminants with Black Shale (휴믹산이 black shale과 오염물질의 분포에 미치는 영향에 대한 연구)

  • Min, Jee-Eun;Park, Jae-Woo
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.6
    • /
    • pp.670-675
    • /
    • 2004
  • Humic acids are macromolecules originated from natural water, soil, and sediment. The characteristics of humic acid enable it to change the distribution of metals as well as many kinds of organic contaminants and to determine the sorption of them from soil solution. To see the effect of humic acid on the removal rate of organic contaminants and heavy metals, batch-scale experiments were performed. As a natural geosorbent, black shale was used as a sorbent media, which showed hight sorption capacity of trichloroethylene (TCE), lead, cadmium and chromium. The effect of sorption-desorption, pH, ionic strength and the concentration of humic acid was taken into consideration. TCE sorption capacity by black shale was compared to natural bentonite and hexadecyltrimethylammonium (HDTMA) modified bentonite. The removal rate was good and humic acid also sorbed onto black shale very well. The organic part of humic acid could effectively enhance the partition of TCE and it act as an electron donor to reduce Cr(VI) to Cr(III). Cationic metal of Pb(II) and Cd(II) also removed from the water by black shale. With 3 mg/L of humic acid, both Pb(II) and Cd(II) were removed more than without humic acid. That could be explained by sorption and complexation with humic acid and that was possible when humic acid could change the hydrophobicity and solubility of heavy metals. Humic acid exhibited desorption-resistivity with black shale, which implied that black shale could be an alternative sorbent or material for remediation of organic contaminants and heavy metals.

Inhibitory Effect of Nitrate on Fe(III) and Humic acid reduction in Shewanella putrefaciens DK-1

  • Lee, Il-Gyu;Kim, Sang-Jin;Ahn, Tae-Young
    • Journal of Microbiology
    • /
    • v.38 no.3
    • /
    • pp.180-182
    • /
    • 2000
  • The inhibitory effects of nitrate on Fe(III) and humic acid reduction were examined in Shewanella putrefaciens DK-1. Therer is no difference in Fe(III) reduction until 25 hours between cultures using Fe(III) production was decreased drastically when Fe(III) and nitrate were used as electron acceptors. The production of AHQDS(2,6-anthrahydroquinon disulfonate) showed similar patterns when AQDS alone and both AQDS and Fe(III) were used as electron acceptors. When AQDS(2,6-anthraquinon disulfonate) and nitrate were used as electron acceptors, the production of AHQDS was completely inhibited.

  • PDF

Measurement of Binding Constant between Chemical Compound and Humic Acid (Humic Acid와 화학물질간의 결합상수 측정)

  • Yook, Keun-Sung;Kim, Yong-Hwa
    • Analytical Science and Technology
    • /
    • v.9 no.1
    • /
    • pp.91-97
    • /
    • 1996
  • The extent of binding($K_B$) between chemical compound and humic acid was measured as an indicator of decrease in toxicity. From the experimental $K_B$ and estimated $K_B$ calculated from $K_{ow}$, no reduction of toxicity among test chemicals in aquatic systems were predicted except P,P'-DDT. The effect of humic acid on aquatic organisms is not expected to be significant for the compounds with $K_B{\leq}10^5$ or $K_{ow}{\leq}10^6$.

  • PDF

Formation of Hydrogen Peroxide by the Ozonation of Aqueous Humic Acid (수중 부식산의 오존처리시 생성되는 과산화수소의 농도 변화에 대한 연구)

  • Kim, Kei Woul;Rhee, Dong Seok
    • Analytical Science and Technology
    • /
    • v.13 no.5
    • /
    • pp.659-665
    • /
    • 2000
  • The changes in $UV_{254}$ and concentrations of $H_2O_2$ formed by ozonation of aqueous humic acid in ozone/high pH, peroxone process and in the presence of radical scavenger, $HCO_3{^-}$ were investigated. This study confirmed that the formation of $H_2O_2$ by ozonation may undergo different reaction pathways compared to those of $UV_{254}$ reduction in the degradation of the humic acid. The concentration of $H_2O_2$ produced by ozonation was found to be increased with decreasing pH of the sample solution due to the higher stability of ozone molecules at acidic conditions. On the while, $UV_{254}$ reduction was found to be higher at alkaline conditions or larger amount of $H_2O_2$ additions as a radical promoter in which the producing of ${\cdot}OH$, ${\cdot}HO_2$ radicals can be more favorable. From the results, it has been suggested that the formation of $H_2O_2$ by ozonation depends mainly on the direct reactions of ozone with humic acid molecules, while $UV_{254}$ reduction is affected by both the indirect reactions of the radicals and direct reactions of ozone with humic acid.

  • PDF

Utilization of Various Electron Acceptors in Shewanella putrefaciens DK-l (Shewanella putrefaciens DK-1의 Fe(III) 환원 특성)

  • 조아영;이일규;전은형;안태영
    • Korean Journal of Microbiology
    • /
    • v.39 no.3
    • /
    • pp.175-180
    • /
    • 2003
  • Microbial Fe(III) reduction is an important factor for biogeochemical cycle in anaerobic environments, especially sediment of freshwater such as lakes, ponds and rivers. In addition, the Fe(III) reduction serves as a model for potential mechanisms for the oxidation of organic compounds and the reduction of toxic heavy metals, such as chrome or uranium. Shewanella putrefaciens DK-1 was a gram-negative, facultative anaerobic Fe(III) reducer and used ferric ion as a terminal electron acceptor for the oxidation of organic compounds to $CO_{2}$ or other oxidized metabolites. The ability of reducing activity and utilization of various electron acceptors and donors for S. putrefaciens DK-1 were investigated. S. putrefaciens DK-1 was capable of using a wide variety of electron acceptor, including $NO_{3}^{-}$, Fe(III), AQDS, and Mn(IV). However, its ability to utilize electron donors was limited. Lactate and formate were used as electron donors but acetate and toluene were not used. Fe(III) reduction of S. putrefaciens DK-l was inhibited by the presence of either $NO_{3}^{-}$ or $NO_{2}^{-}$. Further S. putrefaciens DK-1 used humic acid as an electron acceptor and humic acid was re-oxidized by nitrate. Environmental samples showing the Fe(III)-reducing activity were used to investigate effects of the limiting factors such as carbon, nitrogen and phosphorus on the Fe(III) reducing bacteria. The highest Fe (III) reducing activity was measured, when lactate as a carbon source and S. putrefaciens DK-1 as an Fe(III) reducer added in untreated sediment samples of Cheon-ho and Dae-ho reservoirs.

The Study on the Humic Acid Removal using Underwater Plasma Discharge (수중 방전을 이용한 휴믹산 제거)

  • Hong, Eunjung;Chung, Paulgene;Ryu, Seungmin;Park, Junseuk;Yoo, Seungryul;Lho, Taihyeop
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.3
    • /
    • pp.367-374
    • /
    • 2012
  • A flotation process has a shorter processing time and needs less space than a sedimentation process. Dissolved air flotation process (DAF) is an efficient flotation method and used in a conventional wastewater treatment process. However, DAF requires the circulation of water containing compressed air and requires expensive installation and operation cost. Plasma Air Flotation (PAF) process is able to float flocs by micro bubbles generated from underwater plasma without the circulation of bubbly water and additional saturators. Therefore, PAF can be an alternative solution overcoming economic barriers. In this study, Humic acid removal efficiency by PAF process was compared with that of sedimentation process. 44.67% and 87.3% reduction rate based on UV 254 absorbance has been measured in sedimentation and PAF respectively. In particular, PAF in the flocculation zone can dramatically remove humic acid from water. In flocculation zone, PAF can separate organic matters but sedimentation cannot.

Trihalomethane Formation by Chlorine Dioxide in Case of Water Containing Bromide Ion (브롬이온을 함유한 상수 원수에 이산화염소 주입시 THM생성거동에 관한 연구)

  • Lee, Yoon-Jin;Lee, Hwan;Nam, Sang-Ho
    • Journal of Environmental Health Sciences
    • /
    • v.25 no.3
    • /
    • pp.83-88
    • /
    • 1999
  • This study was carried out to examine the behavior of THM formation in water treated with chlorine dioxide where humic acid was used as THM precursor. THM was not detected in bromide-free water, but formed in water containing bromide. When 10 mg/l of chlorine dioxide was added to water containing 5 mg/l of humic acid and bromide respectively, 20.46 ${\mu}$g/l of THM was formed. It is postulated that chlorine dioxide oxidize bromide to hydrobromous acid, which subsequently reacted with humic acids similar to chlorine reaction. The formation of THM could be reduced at low pH. Among THM formed, CHBr$_3$ was the predominant species in the alkaline solution, while CHCl$_3$ in the acidic solution. A sample pretreated with chlorine dioxide for 24h before addition of chlorine showed a reduction of 75.1% in THM formation, compared with a sample not pretreated with chlorine dioxide and a sample treated by chlorine for 24h prior to addition of chlorine dioxide also showed a reduction of 37.8% in THM formation, compared with a sample not added with chlorine dioxide. It may explain that chlorine dioxide oxidizes directly a fraction of THM.

  • PDF

Studies on the Fouling Reduction through Oxyfluorination of Porous Polyethylene Membranes (함산소불소화법을 통한 다공성 폴리에틸렌막의 파울링현상 감소연구)

  • Kang, Su Yeon;Rhim, Ji Won;Cheong, Seong Ihl
    • Membrane Journal
    • /
    • v.24 no.6
    • /
    • pp.431-437
    • /
    • 2014
  • To overcome the flux reduction due to the fouling by adsorption of foulants onto the porous hydrophobic polyethylene membrane surface, the oxyflorination was introduced to hydrophilize the hydrophobic membranes. After the hydrophilization through oxyfluorination, the contact angle decreased from $93^{\circ}$ to $50^{\circ}$ while the water flux increased to 60%. It was considered that for the model foulants dissolved in water, such as albumin (form bovine serum, BSA), humic acid sodium salt (HA), and alginic acid sodium salt (SA), the flux was enhanced since the adsorbed foulants decreased by the oxyfluorination. Particularly, it was obtained that the water flux was over twice more than the untreated polyethylene membrane in case of SA foulant.

Systematic study on calcium-dissolved organic matter interaction in a forward osmosis membrane-filtration system (정삼투 멤브레인 공정에서 칼슘이온과 용존 유기물 상호작용에 의한 플럭스 변화 연구)

  • Heo, Jiyong;Han, Jonghun;Kim, Yejin;Her, Namguk
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.30 no.6
    • /
    • pp.737-744
    • /
    • 2016
  • The investigation of effects on fouling propensity with various viscosity of feed solutions would be better understanding for forward osmosis (FO) performance since the fouling propensity was directly influenced with solution viscosity. Therefore, this study was focused on the FO fouling with model foultants (humic acid, alginate) by altering solution viscosity with change of ionic strength (I.S) and $Ca^{2+}$ concentrations. In the comparison between humic acid and alginate, as expected, the alginate generally caused more severe fouling (almost 35.8 % of flux reduction) based on the solution characteristics (high viscosity) and fouling patterns (coil and gel layer). However, interesting point to note is that the fouling propensity of alginate was more severe even though it was applied with low viscosity of feed conditions (I.S = 20 mM, $Ca^{2+}=1mM$). This might be due to that crossed linked gel layer of alginate on the FO membrane surface could be best formed in the condition of $Ca^{2+}$ presence and higher I.S, and that is more dominant to fouling propensity than the low viscosity of feed solutions.