• Title/Summary/Keyword: Humanoid Robot Control System

Search Result 81, Processing Time 0.028 seconds

Framework of a Cooperative Control Software for Heterogeneous Multiple Network Based Humanoid (이종 다수의 네트워크 기반 휴머노이드를 위한 협조제어 소프트웨어 프레임워크)

  • Lim, Heon-Young;Kang, Yeon-Sik;Lee, Joong-Jae;Kim, Jong-Won;You, Bum-Jae
    • The Journal of Korea Robotics Society
    • /
    • v.3 no.3
    • /
    • pp.226-236
    • /
    • 2008
  • In this paper, control software architecture is designed to enable a heterogeneous multiple humanoid robot demonstration executing tasks cooperating with each other. In the heterogeneous humanoid robot team, one large humanoid robot and two small humanoid robots are included. For the efficient and reliable information sharing between many software components for humanoid control, sensing and planning, CORBA based software framework is applied. The humanoid tasks are given in terms of finite state diagram based human-robot interface, which is interpreted into the XML based languages defining the details of the humanoid mission. A state transition is triggered based on the event which is described in terms of conditions on the sensor measurements such as robot locations and the external vision system. In the demonstration of the heterogeneous humanoid team, the task of multiple humanoid cleaning the table is given to the humanoid robots and successfully executed based on the given state diagram.

  • PDF

Intelligent Walking Modeling of Humanoid Robot Using Learning Based Neuro-Fuzzy System (학습기반 뉴로-퍼지 시스템을 이용한 휴머노이드 로봇의 지능보행 모델링)

  • Park, Gwi-Tae;Kim, Dong-Won
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.4
    • /
    • pp.358-364
    • /
    • 2007
  • Intelligent walking modeling of humanoid robot using learning based neuro-fuzzy system is presented in this paper. Walking pattern, trajectory of the zero moment point (ZMP) in a humanoid robot is used as an important criterion for the balance of the walking robots but its complex dynamics makes robot control difficult. In addition, it is difficult to generate stable and natural walking motion for a robot. To handle these difficulties and explain empirical laws of the humanoid robot, we are modeling practical humanoid robot using neuro-fuzzy system based on the two types of natural motions which are walking trajectories on a t1at floor and on an ascent. Learning based neuro-fuzzy system employed has good learning capability and computational performance. The results from neuro-fuzzy system are compared with previous approach.

Implementation of Middleware for Real-Time Distributed Control System of a Humanoid Robot Using CAN and TCP/IP (휴머노이드 로봇 ISHURO-II의 실시간 분산 제어를 위한 미들웨어 구현)

  • Choi, Woo-Chang;Kim, Jin-Geol
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.175-177
    • /
    • 2006
  • This paper deals with implementation of middleware using CAN(Controller Area Network) network and TCP/IP for real-time distributed control system of a humanoid robot. Existent system using CAN network is available. But, there is problems in extensibility and flexibility. In this raper, the new system using TCP/IP for solution and improvement of problems is proposed. The new system is applied to ISHURO-II, real-humanoid robot. The performance is verified through experiment.

  • PDF

Implementation of Backlash Compensator for Stability of a Humanoid Robot (인간형 로봇의 안정성을 위한 백래쉬 보상기 구현)

  • Jung, Byung-Jae;Kong, Jung-Shik;Kim, Jin-Geol;Huh, Uk-Youl
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.681-683
    • /
    • 2004
  • This paper describes the control of a geared DC motor having a backlash for implementation of a humanoid robot using disturbance observer. Critical problem of the humanoid robot is caused by the nonlinearity such as a backlash. To meet this problem, a control method using disturbance observer has been proposed. The disturbance observer is designed to estimate the effects of nonlinearities in the system, to make the nonlinear system behave linearly. To design the low-pass filter in the disturbance observer, cut-off frequency of the output should be found. The goal of this paper is the implementation of the proposed system, compensating the backlash effect. To accomplish the goat, PD control and disturbance observer are employed to the system with no load and full load. As a result, system stability can be guaranteed by compensating the effect of backlash. In addition, real experiment shows the proposed control methodology will satisfy the stable working of a humanoid type in the future.

  • PDF

Real-time Message Network System for a Humanoid Robot

  • Ahn, Sang-Min;Gong, Jung-Sik;Lee, Bo-Hee;Kim, Jin-Geol;Huh, Uk-Youl
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2296-2300
    • /
    • 2005
  • This paper deals with the real-time message network system by a CAN (controller area network) based on the real-time distributed control scheme to integrate actuators and sensors in a humanoid robot. In order to apply the real-time distributed processing for a humanoid robot, each control unit should have the real-time efficient control method, fast sensing method, fast calculation and real-time valid data exchange method. Moreover, the data from sensors and encoders must be transmitted to the higher level of control units in maximum time limit. This paper describes the real-time message network system design and the performance of the system.

  • PDF

Implementation of Active Humanoid Robot Soccer System Using Global Vision (글로벌 비젼을 이용한 자동제어 휴머노이드 축구시스템 설계)

  • Ku, Ja-Yl
    • 전자공학회논문지 IE
    • /
    • v.45 no.2
    • /
    • pp.28-33
    • /
    • 2008
  • The paper is represented active robot soccer system using humanoid. many robot we implement the control method of several robot and the algorithm of robot soccer system. the position and direction of the robot is recognized quickly using color tag on the shoulder of robot and special personal computer. Humanoid robot soccer system in this paper develops better in existent wheel-driven soccer robot. Forward, through a lot of studies, self-moving soccer game like human with humanoid is possible.

Network Realization for a Distributed Control of a Humanoid Robot (휴머노이드 로봇의 분산 제어를 위한 네트윅 구현)

  • Lee Bo-Hee;Kong Jung-Shik;Kim Jin-Geol
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.4
    • /
    • pp.485-492
    • /
    • 2006
  • This paper deals with implementation of network for distributed control system of a humanoid robot ISHURO(Inha Semyung Humanoid Robot). A humanoid robot needs much degree of freedom structurally and much data for having flexible movement. To realize such a humanoid robot, distributed control method is preferred to the centralized one since it gives a compactness, modularity and flexibility for the controllers. For organizing distributed control system of a humanoid robot, a control processor on a board is needed to individually control the joint motor and communication technology between the processors is required to transmit its information within control time. The processor is DSP-based processor and includes CAN network on a chip. It shares the computational load such as monitoring the sensor information and controlling the actuator between each of modules. In this paper, the communication architecture is suggested and its message protocol are discussed including message structure, time consumption for transmission, and controller structure at the view of distributed control for a humanoid robot. All of the sequence are simulated with Matlab and then verified with real walking experiment by ISHURO.

The Design of Humanoid Robot Arm based on the Morphological and Neurological Analysis of Human Arm (인간 팔의 형태학적.신경학적 분석 기법에 기반한 휴머노이드 로봇 팔 설계)

  • Choi, Hyeong-Yoon;Bae, Young-Chul;Moon, Yong-Seon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.6
    • /
    • pp.555-559
    • /
    • 2007
  • There are few representative humanoid robots including Japanese ASIMO from Honda and HUBO from KAIST. We cannot consider ASIMO and HUBO the perfect humanoid robots, however. The basic principles when developing humanoid robot is to make them to work in a similar way as human's movement of arm. In this paper, we proposed method of designing humanoid robotic arms based on the morphological.eurological analysis of human's arm tor robot's arm to work in a similar way as human's ann, and we also implemented arm movement control system to humanoids robot by using SERCOS communication.

Analysis of Stable Walking Pattern of Biped Humanoid Robot: Fuzzy Modeling Approach (이족 휴머노이드 로봇의 안정적인 보행패턴 분석: 퍼지 모델링 접근방법)

  • Kim Dongwon;Park Gwi-Tae
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.6
    • /
    • pp.376-382
    • /
    • 2005
  • In this paper, practical biped humanoid robot is presented, designed, and modeled by fuzzy system. The humanoid robot is a popular research area in robotics because of the high adaptability of a walking robot in an unstructured environment. But owing to the lots of circumstances which have to be taken into account it is difficult to generate stable and natural walking motion in various environments. As a significant criterion for the stability of the walk, ZMP (zero moment point) has been used. If the ZMP during walking can be measured, it is possible for a biped humanoid robot to realize stable walking by a control method that makes use of the measured ZMP. In this study, measuring the ZMP trajectories in real time situations throughout the whole walking phase on the flat floor and slope are conducted. And the obtained ZMP data are modeled by fuzzy system to explain empirical laws of the humanoid robot. By the simulation results, the fuzzy system can be effectively used to model practical humanoid robot and the acquired trajectories will be applied to the humanoid robot for the human-like walking motions.

Design and implement of the Educational Humanoid Robot D2 for Emotional Interaction System (감성 상호작용을 갖는 교육용 휴머노이드 로봇 D2 개발)

  • Kim, Do-Woo;Chung, Ki-Chull;Park, Won-Sung
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1777-1778
    • /
    • 2007
  • In this paper, We design and implement a humanoid robot, With Educational purpose, which can collaborate and communicate with human. We present an affective human-robot communication system for a humanoid robot, D2, which we designed to communicate with a human through dialogue. D2 communicates with humans by understanding and expressing emotion using facial expressions, voice, gestures and posture. Interaction between a human and a robot is made possible through our affective communication framework. The framework enables a robot to catch the emotional status of the user and to respond appropriately. As a result, the robot can engage in a natural dialogue with a human. According to the aim to be interacted with a human for voice, gestures and posture, the developed Educational humanoid robot consists of upper body, two arms, wheeled mobile platform and control hardware including vision and speech capability and various control boards such as motion control boards, signal processing board proceeding several types of sensors. Using the Educational humanoid robot D2, we have presented the successful demonstrations which consist of manipulation task with two arms, tracking objects using the vision system, and communication with human by the emotional interface, the synthesized speeches, and the recognition of speech commands.

  • PDF