인간-객체 상호작용 탐지는 객체 탐지와 상호작용 인식을 함께 풀어야하는 분야로 탐지 모델의 학습을 위해서 많은 데이터를 필요로 한다. 현재 공개된 데이터셋은 규모가 부족하여 데이터 증강 기법에 대한 요구가 커지고 있으나, 대부분의 연구에서 기존의 객체 탐지, 이미지 분할분야에서 활용하는 증강 기법을 활용하고 있는 실정이다. 이에 본 연구에서는 인간-객체 상호작용 탐지 분야에서 활용하는 데이터셋의 특성을 파악하고, 이를 통해 인간-객체 상호작용 탐지 모델 성능 향상에 효과적인 데이터 증강 기법을 제안한다. 본 연구에서 제안한 증강 기법에 대한 검증을 위하여 실험 환경을 구축하고, 기존의 학습 모델에 적용하여 증강 기법을 적용할 경우에 탐지 모델의 성능 향상이 가능함을 확인하였다.
Human-object interaction (HOI) detection is a popular computer vision task that detects interactions between humans and objects. This task can be useful in many applications that require a deeper understanding of semantic scenes. Current HOI detection networks typically consist of a feature extractor followed by detection layers comprising small filters (eg, 1 × 1 or 3 × 3). Although small filters can capture local spatial features with a few parameters, they fail to capture larger context information relevant for recognizing interactions between humans and distant objects owing to their small receptive regions. Hence, we herein propose a three-stream HOI detection network that employs a context convolution module (CCM) in each stream branch. The CCM can capture larger contexts from input feature maps by adopting combinations of large separable convolution layers and residual-based convolution layers without increasing the number of parameters by using fewer large separable filters. We evaluate our HOI detection method using two benchmark datasets, V-COCO and HICO-DET, and demonstrate its state-of-the-art performance.
Rapid object recognition is one of the main stream research themes focusing to reveal how human recognizes object and interacts with environment in natural world. This field of study is of consequence in that it is highly important in evolutionary perspective to quickly see the external objects and judge their characteristics to plan future reactions. In this study, we investigated how human detect natural scene objects and categorize them in a limited time frame. We applied Magnetoencepahlogram (MEG) while participants were performing detection (e.g. object vs. texture) or basic-level categorization (e.g. cars vs. dogs) tasks to track the dynamic interaction in human brain for rapid object recognition process. The results revealed that detection and categorization involves different temporal and functional connections that correlated for the successful recognition process as a whole. These results imply that dynamics in the brain are important for our interaction with environment. The implication from this study can be further extended to investigate the effect of subconscious emotional factors on the dynamics of brain interactions during the rapid recognition process.
This paper discusses the method of moving object detection for biped robot walking. Most researches on vision based object detection have mostly focused on fixed camera based algorithm itself. However, developing vision systems for biped walking robot is an important and urgent issue since hired walking robots are ultimately developed not only for researches but to be utilized in real life. In the research, method for moving object detection has been developed for task assignment and execution of biped robot as well as for human robot interaction (HRI) system. But these methods are not suitable to biped walking robot. So, we suggest the advanced method which is suitable to biped walking robot platform. For carrying out certain tasks, an object detecting system using modified optical flow algorithm by wireless vision camera is implemented in a biped walking robot.
This paper proposes a method to estimate the level of interest shown by visitors towards a specific target, a guide robot, in spaces where a large number of visitors, such as exhibition halls and museums, can show interest in a specific subject. To accomplish this, we apply deep learning-based behavior recognition and object tracking techniques for multiple visitors, and based on this, we derive the behavior analysis and interest level of visitors. To implement this research, a personalized dataset tailored to the characteristics of exhibition hall and museum environments was created, and a deep learning model was constructed based on this. Four scenarios that visitors can exhibit were classified, and through this, prediction and experimental values were obtained, thus completing the validation for the interest estimation method proposed in this paper.
Various interaction techniques have been studied for providing the feeling of touch and improve immersion in augmented reality (AR) environments. Tangible AR interaction exploiting two types (product-type and pointer-type) of simple objects has earned great interest for cost-effective design evaluation of digital handheld products. When the sizes of markers attached to the objects are kept big to obtain better marker recognition, the pointer-type object frequently and significantly occludes the product-type object, which deteriorates natural visualization and level of immersion in an AR environment. In this paper, in order to overcome such problems, we propose tangible AR interaction using fingertip touch combined with small-sized markers. The proposed approach facilitates the use of convex polygons to recover the boundaries of AR markers which are partially occluded. It also properly enlarges the pattern area of each AR marker to reduce the sizes of AR markers without sacrificing the quality of marker detection. We empirically verified the quality of the proposed approach, and applied it in the process of design evaluation of digital products. From experimental results, we found that the approach is comparably accurate enough to be applied to the design evaluation process and tangible enough to provide a pseudo feeling of manipulating virtual products with human hands.
인간과 컴퓨터의 상호작용이 관심분야로 대두되면서 인체를 검출하고 추적하는 기술들에 관한 연구가 활발히 진행되고 있다. 본 논문에서는 단일카메라의 입력으로 인체의 비율을 이용하여 인체 부위를 연결하는 조인트를 자동으로 검출하고 객체를 추적하는 알고리즘을 제안한다. 제안방법은 입력영상과 배경영상의 회색조 영상과 색상 영상의 차영상을 구한 후 그 결과를 결합하여 배경과 전경을 분리하고 객체를 추출한다. 또한 얼굴길이와 인체 각 영역의 측정값을 이용하여 인체 비율을 모델링하고 추출된 객체 실루엣의 코너점과 모델링된 비율을 이용해 객체의 조인트를 자동으로 추출한다. 추출된 조인트의 움직임을 블록매칭 기법으로 객체의 움직임을 추적한다. 제안방법을 카메라로 입력되는 실험동영상에 적용한 결과 인체의 실루엣과 조인트를 자동 검출하며 추출된 조인트 또한 효율적으로 추적되었다.
The 10th International Conference on Construction Engineering and Project Management
/
pp.775-782
/
2024
This systematic review comprehensively analyzes the application of computer vision in construction productivity measurement and emphasizes the importance of worker accountability in construction sites. It identifies a significant gap in the connection level between input (resources) and output data (products or progress) of productivity monitoring, a factor not adequately addressed in prior research. The review highlights three fundamental groups: input, output, and connection groups. Object detection, tracking, pose, and activity recognition, as the input stage, are essential for identifying characteristics and worker movements. The output phase will mostly focus on progress monitoring, and understanding the interaction of workers with other entities will be discussed in the connection groups. This study offers four research future research directions for the worker accountability monitoring process, such as human-object interaction (HOI), generative AI, location-based management systems (LBMS), and robotic technologies. The successful accountability monitoring will secure the accuracy of productivity measurement and elevate the competitiveness of the construction industry.
본 논문에서는 인간과 컴퓨터의 상호작용을 위해 연속된 입력영상에서 인체의 실루엣과 조인트를 자동추출하고 조인트를 추적함으로 객체를 추적하는 방법을 제안한다. 또한 추출된 조인트를 이용하여 인체를 매핑하여 사람의 동작을 재현한다. 이를 위해 인체의 치수를 이용하여 인체 움직임을 제어하는 14개의 조인트로 인체를 모델링한다. 제안방법은 단일카메라로 RGB 컬러로 입력되는 영상을 색상, 채도, 명암의 영상으로 변환한 후 차 영상기법을 이용하여 인체의 실루엣을 추출한다. 추출된 실루엣의 코너점과 인체 모델링 정보를 이용하여 조인트를 자동 검출한다. 객체의 움직임 추적은 전체 영상 중 조인트를 중심으로 블록매칭 기법을 이용하며 추출된 조인트의 위치정보를 이용하여 인체의 움직임을 매핑한다. 제안방법을 실험동영상에 적용한 결과 인체의 실루엣과 조인트를 자동 검출하며 추출된 조인트로 인체의 매핑이 효율적으로 이루어졌다. 또한 조인트의 추적이 매핑된 인체에 반영되어 인체의 움직임도 적절히 표현되었다.
최근 HCI(Human Computer Interaction)의 한 분야인 증강현실은 크게 마커 기반과 비 마커기반으로 구분된다. 비 마커기반은 실세계 환경에서 자연적인 특징을 이용하여 객체를 증강한다. 반면, 마커기반은 사각형의 평면 마커를 이용하여 좌표를 쉽게 계산하고 객체를 정확하게 증강 시킨다. 그러나 마커기반은 제공되는 영상 안에 마커가 존재하기 때문에 비 마커기반 보다 사용자에게 주는 현실감 및 몰입감이 적다. 따라서 본 논문에서는 마커기반의 현실감 및 몰입감을 증대시키기 위해 감쇄 현실과 증강현실을 결합한 객체 제거 기법을 활용한 마커기반 증강현실 시스템 구조를 연구한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.