• Title/Summary/Keyword: Human-in-the-loop experiment system

검색결과 4건 처리시간 0.017초

Development of human-in-the-loop experiment system to extract evacuation behavioral features: A case of evacuees in nuclear emergencies

  • Younghee Park;Soohyung Park;Jeongsik Kim;Byoung-jik Kim;Namhun Kim
    • Nuclear Engineering and Technology
    • /
    • 제55권6호
    • /
    • pp.2246-2255
    • /
    • 2023
  • Evacuation time estimation (ETE) is crucial for the effective implementation of resident protection measures as well as planning, owing to its applicability to nuclear emergencies. However, as confirmed in the Fukushima case, the ETE performed by nuclear operators does not reflect behavioral features, exposing thus, gaps that are likely to appear in real-world situations. Existing research methods including surveys and interviews have limitations in extracting highly feasible behavioral features. To overcome these limitations, we propose a VR-based immersive experiment system. The VR system realistically simulates nuclear emergencies by structuring existing disasters and human decision processes in response to the disasters. Evacuation behavioral features were quantitatively extracted through the proposed experiment system, and this system was systematically verified by statistical analysis and a comparative study of experimental results based on previous research. In addition, as part of future work, an application method that can simulate multi-level evacuation dynamics was proposed. The proposed experiment system is significant in presenting an innovative methodology for quantitatively extracting human behavioral features that have not been comprehensively studied in evacuation. It is expected that more realistic evacuation behavioral features can be collected through additional experiments and studies of various evacuation factors in the future.

탄성 루프형 바퀴를 이용한 장 내 이동 메커니즘 (Flexible Loop Wheel Mechanism for Intestine Movement)

  • 임형준;민현진;김병규;김수현
    • 대한기계학회논문집A
    • /
    • 제26권2호
    • /
    • pp.314-321
    • /
    • 2002
  • An endoscope is usually inserted into the human body for the inspection of the gullet, stomach, and large intestine (colon) and this may cause discomfort to patients and damage to tissues during diagnostic or therapeutic procedures. This situation necessitates a self-propelling endoscope. There are many kinds of mechanism to move in a rigid pipe. However, these methods are difficult to apply directly to the endoscope. The main reason is that human intestine cannot be considered as a uniform, straight, and rigid pipe. This paper proposes a flexible loop wheel mechanism, which is adaptable to the human intestine. This mechanism is designed and fabricated by a simple modeling, and tested by an experiment. Finally, the actuator is inserted into the pig colon.

Open Loop Responses of Posture Complexity in Biomechanics

  • Shin, Youngkyun;Park, Gu-Bum
    • 조명전기설비학회논문지
    • /
    • 제27권8호
    • /
    • pp.42-50
    • /
    • 2013
  • The reactionary responses to control human standing dynamics were estimated under the assumption that postural complexity mainly occurs in the mid-sagittal plane. During the experiment, the subject was exposed to continuous horizontal perturbation. The ankle and hip joint rotations of the subject mainly contributed to maintaining standing postural control. The designed mobile platform generated anterior/posterior (AP) motion. Non-predictive random translation was used as input for the system. The mean acceleration generated by the platform was measured as $0.44m/s^2$. The measured data were analyzed in the frequency domain by the coherence function and the frequency response function to estimate its dynamic responses. The significant correlation found between the input and output of the postural control system. The frequency response function revealed prominent resonant peaks within its frequency spectrum and magnitude. Subjects behaved as a non-rigid two link inverted pendulum. The analyzed data are consistent with the outcome hypothesized for this study.

사물-사람 간 개인화된 상호작용을 위한 음향신호 이벤트 감지 및 Matlab/Simulink 연동환경 (Acoustic Event Detection and Matlab/Simulink Interoperation for Individualized Things-Human Interaction)

  • 이상현;김탁곤;조정훈;박대진
    • 대한임베디드공학회논문지
    • /
    • 제10권4호
    • /
    • pp.189-198
    • /
    • 2015
  • Most IoT-related approaches have tried to establish the relation by connecting the network between things. The proposed research will present how the pervasive interaction of eco-system formed by touching the objects between humans and things can be recognized on purpose. By collecting and sharing the detected patterns among all kinds of things, we can construct the environment which enables individualized interactions of different objects. To perform the aforementioned, we are going to utilize technical procedures such as event-driven signal processing, pattern matching for signal recognition, and hardware in the loop simulation. We will also aim to implement the prototype of sensor processor based on Arduino MCU, which can be integrated with system using Arduino-Matlab/Simulink hybrid-interoperation environment. In the experiment, we use piezo transducer to detect the vibration or vibrates the surface using acoustic wave, which has specific frequency spectrum and individualized signal shape in terms of time axis. The signal distortion in time and frequency domain is recorded into memory tracer within sensor processor to extract the meaningful pattern by comparing the stored with lookup table(LUT). In this paper, we will contribute the initial prototypes for the acoustic touch processor by using off-the-shelf MCU and the integrated framework based on Matlab/Simulink model to provide the individualization of the touch-sensing for the user on purpose.