• 제목/요약/키워드: Human-Knowledge Data Mining

검색결과 25건 처리시간 0.019초

패션 영역에서 디지털 전환 관련 연구동향 및 지식구조 (Research Trends and Knowledge Structure of Digital Transformation in Fashion)

  • 최영현;정진하;이규혜
    • 디지털융복합연구
    • /
    • 제19권3호
    • /
    • pp.319-329
    • /
    • 2021
  • 본 연구에서는 정보학적 접근을 통해 디지털 전환을 다룬 국내 패션 관련 연구동향과 지식구조를 밝히는 것을 목적으로 하였다. 국내 학술연구에서 나타난 관련 연구의 연도별, 학술지별 현황을 파악하고, 네트워크 분석을 통해 주요 연구 주제어를 도출하며, 시기별 주요 연구 동향과 지식 구조를 분석했다. 2010년부터 2020년까지 국내 학술 플랫폼에 게재된 159편의 연구를 수집했고, Python 3.7을 통해 데이터를 정제했으며, NodeXL 1.0.1을 통해 중심성 측정 및 네트워크 구현을 진행했다. 분석 결과 관련 연구는 2016년을 기점으로 활발하게 진행되었으며, 주로 의류학, 예술학 학술지에 밀집된 것으로 나타났다. 온라인 플랫폼, AR/VR이 가장 많이 언급되는 주제어로 나타났으며, 소비자 심리분석, 마케팅 전략 제시, 사례 분석이 주요 연구 방법으로 사용되고 있었다. 군집화를 통해 의류학의 세부 분과별 주요 연구 내용을 도출할 수 있었다. 시기별 주요 주제 분석 결과, 시간이 지남에 따라 소비자 중심의 연구에서 플랫폼이나 서비스에 대한 전략 제시 또는 디자인 개발 연구로 보다 다양하게 변화하고 있었다. 본 연구는 디지털 전환에 대한 패션 분야의 통찰력을 높이는데 기여하고, 관련 주제의 연구를 설계하는데 기초연구로 사용될 수 있을 것이다.

사전과 말뭉치를 이용한 한국어 단어 중의성 해소 (Korean Word Sense Disambiguation using Dictionary and Corpus)

  • 정한조;박병화
    • 지능정보연구
    • /
    • 제21권1호
    • /
    • pp.1-13
    • /
    • 2015
  • 빅데이터 및 오피니언 마이닝 분야가 대두됨에 따라 정보 검색/추출, 특히 비정형 데이터에서의 정보 검색/추출 기술의 중요성이 나날이 부각되어지고 있다. 또한 정보 검색 분야에서는 이용자의 의도에 맞는 결과를 제공할 수 있는 검색엔진의 성능향상을 위한 다양한 연구들이 진행되고 있다. 이러한 정보 검색/추출 분야에서 자연어처리 기술은 비정형 데이터 분석/처리 분야에서 중요한 기술이고, 자연어처리에 있어서 하나의 단어가 여러개의 모호한 의미를 가질 수 있는 단어 중의성 문제는 자연어처리의 성능을 향상시키기 위해 우선적으로 해결해야하는 문제점들의 하나이다. 본 연구는 단어 중의성 해소 방법에 사용될 수 있는 말뭉치를 많은 시간과 노력이 요구되는 수동적인 방법이 아닌, 사전들의 예제를 활용하여 자동적으로 생성할 수 있는 방법을 소개한다. 즉, 기존의 수동적인 방법으로 의미 태깅된 세종말뭉치에 표준국어대사전의 예제를 자동적으로 태깅하여 결합한 말뭉치를 사용한 단어 중의성 해소 방법을 소개한다. 표준국어대사전에서 단어 중의성 해소의 주요 대상인 전체 명사 (265,655개) 중에 중의성 해소의 대상이 되는 중의어 (29,868개)의 각 센스 (93,522개)와 연관된 속담, 용례 문장 (56,914개)들을 결합 말뭉치에 추가하였다. 품사 및 센스가 같이 태깅된 세종말뭉치의 약 79만개의 문장과 표준국어대사전의 약 5.7만개의 문장을 각각 또는 병합하여 교차검증을 사용하여 실험을 진행하였다. 실험 결과는 결합 말뭉치를 사용하였을 때 정확도와 재현율에 있어서 향상된 결과가 발견되었다. 본 연구의 결과는 인터넷 검색엔진 등의 검색결과의 성능향상과 오피니언 마이닝, 텍스트 마이닝과 관련한 자연어 분석/처리에 있어서 문장의 내용을 보다 명확히 파악하는데 도움을 줄 수 있을 것으로 기대되어진다.

사례 기반 지능형 수출통제 시스템 : 설계와 평가 (Export Control System based on Case Based Reasoning: Design and Evaluation)

  • 홍원의;김의현;조신희;김산성;이문용;신동훈
    • 지능정보연구
    • /
    • 제20권3호
    • /
    • pp.109-131
    • /
    • 2014
  • 최근 전 세계적인 원전 설비의 수요 증가로 원자력 전략물자 취급의 중요성이 높아지는 가운데, 국외 수출을 위한 원전 관련 물품 및 기술의 신청 또한 급증하는 추세이다. 전략물자 사전판정 업무는 통상 원자력 물자 관리에 해박한 전문가의 경험 및 지식에 근거하여 수행되어 왔지만, 급증하는 수요에 상응하는 전문 인력의 공급이 부족한 실정이다. 이러한 문제를 극복하기 위하여, 본 연구진은 전략물자 수출 통제를 위한 사례 기반 지능형 수출 통제 시스템을 설계 및 개발하였다. 이 시스템은 현장 전문가의 전담 업무이던 신규 사례에 대한 전략물자 사전판정 과정 업무의 주요 맥락을 자동화 하여 전문가 및 관계 기관이 감당해야 할 업무 부담을 줄이며, 빠르고 정확한 판정을 돕는 의사결정 지원 시스템의 역할을 맡는다. 개발된 시스템은 사례 기반 추론 (Case Based Reasoning) 방식에 기반을 두어 설계되었는데, 이는 과거 사례의 특성을 활용하여 신규 사례의 해법을 유추하는 추론 방법이다. 본 연구에서는 자연어로 작성된 전자문서 처리에 널리 사용되는 텍스트 마이닝 분석 기법을 원자력 분야에 특화된 형태로 응용하여 전략물자 수출통제 시스템을 설계하였다. 시스템 설계의 근거로 선행 연구에서 제안된 반자동식 핵심어 추출 방안의 성능을 보다 엄밀히 검증하였고, 추출된 핵심어로 신규 사례와 유사한 과거 사례를 추출하는 알고리즘을 제안하였다. 제안된 방안은 텍스트 마이닝 분야의 TF-IDF 방법 및 코사인 유사도 점수를 활용한 결과(${\alpha}$)와 원자력 분야에서 통용되는 개념적 지식을 계통으로 분류하여 도출한 결과(${\beta}$)를 조합하여 최종 결과 (${\gamma}$) 를 생성하게 된다. 세부 요소 기술의 성능 검증은 임상 데이터를 활용한 실험 및 실무 전문가의 의견수렴을 통해 이루어졌다. 개발된 시스템은 사전판정 전문 인력을 다수 양성하는 데 드는 비용을 절감하는 데 일조할 것이며, 지식서비스 산업의 의미 있는 응용 사례로서 관련 산업의 성장에 기여할 수 있을 것으로 보인다.

KB국민카드의 빅데이터를 활용한 실시간 CRM 전략: 스마트 오퍼링 시스템 (Real-time CRM Strategy of Big Data and Smart Offering System: KB Kookmin Card Case)

  • 최재원;손봉진;임현아
    • 지능정보연구
    • /
    • 제25권2호
    • /
    • pp.1-23
    • /
    • 2019
  • 소비자의 니즈가 다양해지면서 데이터 마이닝과 고도화된 고객관계관리(CRM) 기법을 활용한 체계적인 마케팅 서비스를 제공하는 기업이 증가하고 있으며, KB국민카드는 고객의 결제 데이터 등을 활용하여 고객 개개인의 니즈를 충족시키고 소비자의 평생가치를 극대화하기 위한 전략을 강조하고 있다. 실시간으로 고객의 카드이용과 고객 행동, 위치 정보 등을 감지하여 진행하는 고효율 마케팅 운영시스템인 스마트 오퍼링 시스템을 운영하고 있으며, 다양한 앱 등과 결합하여 더욱 정교화된 서비스를 제공하고 있다. KB국민카드는 스마트 오퍼링 시스템의 성공과 지속적인 성장을 위해 고도화되고 있는 ICT 기술과 인재 확보를 위한 투자를 진행해야 하며, 장기적인 관점에서의 수익확보를 위한 전략을 확립하여 체계적인 진행이 필요하다. 특히, 프라이버시 침해와 개인정보 유출 등의 문제가 쟁점이 되는 현재 상황에서 고객 정보를 활용한 마케팅에 대한 고객의 인식을 긍정적으로 유도하고, 보안성을 강조하는 기업 이미지 형성을 위한 노력이 필요하다. 본 연구는 CRM 전략의 변화 과정을 통해 현재 카드사의 실시간 CRM 전략을 KB 국민카드의 빅데이터 활용전략과 마케팅 활동을 통해 확인하고자 한다.

비즈니스 인텔리전스 시스템의 활용 방안에 관한 연구: 설명 기능을 중심으로 (A study on the use of a Business Intelligence system : the role of explanations)

  • 권영옥
    • 지능정보연구
    • /
    • 제20권4호
    • /
    • pp.155-169
    • /
    • 2014
  • 다양한 빅데이터 기술이 발전함에 따라, 기업의 전략결정에 있어서 과거에는 의사결정자의 직관이나 경험에 의존하는 경향이 있었다면, 현재는 데이터를 활용한 과학적이고 분석적인 접근이 이루어지고 있다. 이에 많은 기업들이 경영정보시스템 중의 하나인 비즈니스 인텔리전스 (Business Intelligence) 시스템의 예측분석 기능을 활용하고 있다. 하지만, 이러한 시스템이 미래의 경영환경 변화를 예측하고 기업의 의사결정을 돕는 조언자 (Advisor)로서 역할을 한다고 가정할 때, 시스템에서 제공하는 분석결과가 의사결정자에게 도움을 주는 조언 (Advice) 의 역할을 하지 못하는 경우가 많은 실정이다. 따라서, 본 연구에서는 미래예측의 문제에 있어 의사결정자가 시스템의 조언을 따르는데 영향을 미치는 요소들과 영향력에 대해 분석하고, 그 결과를 바탕으로 데이터 기반의 의사결정을 보다 적극적으로 지원하는 시스템 환경을 제시하고자 한다. 좀 더 구체적으로는 예측 과정에 대한 자세한 설명이나 근거 제시가 시스템의 예측결과에 대한 의사결정자의 수용정도에 미치는 영향을 연구하였다. 이를 위하여 193명의 실험자를 대상으로 영화의 개봉 주 매출액을 예측하는 업무를 수행하고, 예측에 대한 설명의 길이와 조언자의 유형(사람과 시스템의 조언 비교)뿐 아니라 의사결정자의 개인 특성이 의사결정자의 조언 수용정도에 미치는 영향을 분석하였다. 시스템에서 제공하는 조언 내용인 예측결과와 설명에 대해 의사결정가가 느끼는 유용성, 신뢰성, 만족도가 조언의 수용에 미치는 영향도 분석하였다. 본 연구는 시스템의 분석결과를 조언으로 보고 조언자와 조언에 관한 의사결정학 분야의 선행연구를 접목시켜 경영정보시스템 연구 분야를 확장하였다는 점에서 연구의 의의가 있고, 실무적으로도 데이터 기반의 의사결정을 보다 적극적으로 지원할 수 있는 시스템 환경을 만들기 위해서 고려해야 할 점들을 제시함으로써 시스템 활용을 위한 정책결정에도 도움을 줄 수 있을 것으로 본다.