• Title/Summary/Keyword: Human umbilical vein endothelial cells

Search Result 242, Processing Time 0.025 seconds

Extract of high hydrostatic pressure-treated danshen (Salvia miltiorrhiza) ameliorates atherosclerosis via autophagy induction

  • Ko, Minjeong;Oh, Goo Taeg;Park, Jiyong;Kwon, Ho Jeong
    • BMB Reports
    • /
    • v.53 no.12
    • /
    • pp.652-657
    • /
    • 2020
  • Danshen (Salvia miltiorrhiza) is a traditional medicinal plant widely used in Asian countries for its pharmacological activities (e.g., amelioration of cardiovascular diseases). In this study, we investigated the anti-atherosclerotic activity of raw danshen root extract prepared using high hydrostatic pressure (HHP) at 550 MPa for 5 min and hot water extraction. This method was useful for elimination of bacteria from cultured danshen plants and for better extraction yield of active principles. The HHP-treated danshen extract (HDE) inhibited proliferation of human umbilical vein endothelial cells (HUVECs) and induced autophagy that was assessed by LC3 conversion and p62 degradation. HDE suppressed foam cell formation in oxLDL-induced RAW264.7 macrophages; lysosomal activity simultaneously increased, measured by acridine orange staining. HDE also reduced atherosclerotic plaque development in vivo in apolipoprotein E knock-out (ApoE-/-) mice fed a high cholesterol diet. Taken together, these results indicated that HDE exhibited anti-atherosclerotic activity via autophagy induction.

RK-270D and E, Oxindole Derivatives from Streptomyces sp. with Anti-Angiogenic Activity

  • Jang, Jun-Pil;Jang, Mina;Nogawa, Toshihiko;Takahashi, Shunji;Osada, Hiroyuki;Ahn, Jong Seog;Ko, Sung-Kyun;Jang, Jae-Hyuk
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.3
    • /
    • pp.302-306
    • /
    • 2022
  • A chemical investigation of a culture extract from Streptomyces sp. RK85-270 led to the isolation and characterization of two new oxindoles, RK-270D (1) and E (2). The structures of 1 and 2 were determined by analyzing spectroscopic and spectrometric data from 1D and 2D NMR and High-resolution electrospray ionization mass spectrometry (HRESIMS) experiments. Compound 1 exhibited anti-angiogenic activities against human umbilical vein endothelial cells (HUVECs) without cytotoxicity. Results of Western blot analysis revealed that 1 inhibits VEGF-induced angiogenesis in the HUVECs via VEGFR2/ p38 MAPK-mediated pathway.

RNA polymerase I subunit D activated by Yin Yang 1 transcription promote cell proliferation and angiogenesis of colorectal cancer cells

  • Jianfeng Shan;Yuanxiao Liang;Zhili Yang;Wenshan Chen;Yun Chen;Ke Sun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.28 no.3
    • /
    • pp.265-273
    • /
    • 2024
  • This study aims to explore possible effect of RNA polymerase I subunit D (POLR1D) on proliferation and angiogenesis ability of colorectal cancer (CRC) cells and mechanism herein. The correlation of POLR1D and Yin Yang 1 (YY1) expressions with prognosis of CRC patients in TCGA database was analyzed. Quantitative realtime polymerase chain reaction (qRT-PCR) and Western blot were applied to detect expression levels of POLR1D and YY1 in CRC cell lines and CRC tissues. SW480 and HT-29 cells were transfected with si-POLR1D or pcDNA3.1-POLR1D to achieve POLR1D suppression or overexpression before cell migration, angiogenesis of human umbilical vein endothelial cells were assessed. Western blot was used to detect expressions of p38 MAPK signal pathway related proteins and interaction of YY1 with POLR1D was confirmed by dual luciferase reporter gene assay and chromatin immunoprecipitation (ChIP). TCGA data showed that both POLR1D and YY1 expressions were up-regulated in CRC patients. High expression of POLR1D was associated with poor prognosis of CRC patients. The results showed that POLR1D and YY1 were highly expressed in CRC cell lines. Inhibition or overexpression of POLR1D can respectively suppress or enhance proliferation and angiogenesis of CRC cells. YY1 inhibition can suppress CRC progression and deactivate p38 MAPK signal pathway, which can be counteracted by POLR1D overexpression. JASPAR predicted YY1 can bind with POLR1D promoter, which was confirmed by dual luciferase reporter gene assay and ChIP. YY1 transcription can up-regulate POLR1D expression to activate p38 MAPK signal pathway, thus promoting proliferation and angiogenesis ability of CRC cells.

Suppression of Helicobacter pylori-induced Angiogenesis by a Gastric Proton Pump Inhibitor (Proton Pump Inhibitor에 의한 Helicobacter pylori의 혈관형성 억제효과)

  • Jin, Sung-Ho;Lee, Hwa-Young;Kim, Dong-Kyu;Cho, Yong-Kwan;Hahm, Ki-Baik;Han, Sang-Uk
    • Journal of Gastric Cancer
    • /
    • v.5 no.3 s.19
    • /
    • pp.191-199
    • /
    • 2005
  • Background: Though infections of Helicobacter pylori (H. pylori) are closely associated with activation of host angiogenesis, the underlying mechanisms, as well as the strategy for its prevention, have not been identified. Here, we investigated a causal role of H. pylori infection in angiogenesis of gastric mucosa and a potent inhibitory effect of a gastric proton pump inhibitor (PPI) on the gastropathy. Materials and Methods: A comparative analysis of CD 34 expression in tissues obtained from 20 H. pylori-associated gastritis and 18 H. pylori-negative gastritis patients was performed. Expression of $HIF-1{\alpha}$ and VEGF were tested by using RT-PCR. To evaluate the direct effect of H. pylori infection on differentiation of endothelial HUVEC cells, we carried out an in vitro angiogenesis assay. Results: H. pyfori-associated gastritis tissues showed significantly higher density of $CD34^+$ blood vessels than did H. pylori-negative gastritis tissues, and the levels were well correlated with expressions of $HIF-1{\alpha}$. Conditioned media from H. pylori-infected gastric mucosal cells stimulated a tubular formation of HUVEC cells. We also found a significant inhibitory effect of PPI, an agent frequently used for H. pylori eradication, on H. pylori-induced angiogenesis. This drug effectively inhibited the phosphorylation of MAP kinase ERK1/2, which is a principal signal for H. pylori-induced angiogenesis. Conclusion: The fact that PPls can down-regulate H. pylori-induced angiogenesis suggest that anti-angiogenic treatment using PPI may be a preventive approach for H. pylori-associated carcinogenesis.

  • PDF

The impact of Caesalpinia Sappan L. on Oxidative Damage and Inflammatory Relevant Factor in RAW 264.7 Cells and HUVEC (소목(蘇木)이 산화적 손상 및 Raw 264.7 cell과 HUVEC에서의 염증 유관 인자에 미치는 영향)

  • Kang, Seong-Sun;Kim, Myung-Sin;Jo, Jae-Jun;Choi, Seong-An;Yang, Eui-Ho;Jeon, Sang-Yun;Choi, Chang-Won;Hong, Soek
    • The Journal of Internal Korean Medicine
    • /
    • v.34 no.1
    • /
    • pp.100-111
    • /
    • 2013
  • Objectives : This study investigated the impact of Caesalpinia sappan L. on oxidative damage and inflammatory relevant factor in RAW 264.7 cells and human umbilical vein endothelial cells (HUVEC). Methods : We determined whether fractionated EtOH extracts of Caesalpinia sappan L. (CSL) inhibit free radical generation such as 2,2-diphenyl-1-picrylhydrazyl (DPPH), reactive oxygen species (ROS) and nitric oxide (NO) and pro-inflammatory cytokines in lipopolysaccharide (LPS)-treated RAW 264.7 cells and HUVEC. Result : 1. DPPH removal capacity was increased by CSL. 2. LPS-induced ROS, and NO inhibitory capacity were increased by CSL. 3. LPS-induced cell death of Raw 264.7 cells was decreased by CSL. 4. The amount of cytokine generation in Raw 264.7 cell was decreased significantly by CSL. 5. The amount of cytokine generation in HUVEC was decreased significantly by CSL. Conclusions : These results suggest that CSL supplement may attenuate oxidative stress by elevated antioxidative processes, and suppress inflammatory mediator activation.

Angiogenesis in newly regenerated bone by secretomes of human mesenchymal stem cells

  • Katagiri, Wataru;Kawai, Takamasa;Osugi, Masashi;Sugimura-Wakayama, Yukiko;Sakaguchi, Kohei;Kojima, Taku;Kobayashi, Tadaharu
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.39
    • /
    • pp.8.1-8.8
    • /
    • 2017
  • Background: For an effective bone graft for reconstruction of the maxillofacial region, an adequate vascular network will be required to supply blood, osteoprogenitor cells, and growth factors. We previously reported that the secretomes of bone marrow-derived mesenchymal stem cells (MSC-CM) contain numerous growth factors such as insulin-like growth factor (IGF)-1, transforming growth factor $(TGF)-{\beta}1$, and vascular endothelial growth factor (VEGF), which can affect the cellular characteristics and behavior of regenerating bone cells. We hypothesized that angiogenesis is an important step for bone regeneration, and VEGF is one of the crucial factors in MSC-CM that would enhance its osteogenic potential. In the present study, we focused on VEGF in MSC-CM and evaluated the angiogenic and osteogenic potentials of MSC-CM for bone regeneration. Methods: Cytokines in MSC-CM were measured by enzyme-linked immunosorbent assay (ELISA). Human umbilical vein endothelial cells (HUVECs) were cultured with MSC-CM or MSC-CM with anti-VEGF antibody (MSC-CM + anti-VEGF) for neutralization, and tube formation was evaluated. For the evaluation of bone and blood vessel formation with micro-computed tomography (micro-CT) and for the histological and immunohistochemical analyses, a rat calvarial bone defect model was used. Results: The concentrations of IGF-1, VEGF, and $TGF-{\beta}1$ in MSC-CM were $1515.6{\pm}211.8pg/mL$, $465.8{\pm}108.8pg/mL$, and $339.8{\pm}14.4pg/mL$, respectively. Tube formation of HUVECs, bone formation, and blood vessel formation were increased in the MSC-CM group but decreased in the MSC-CM + anti-VEGF group. Histological findings suggested that new bone formation in the entire defect was observed in the MSC-CM group although it was decreased in the MSC-CM + anti-VEGF group. Immunohistochemistry indicated that angiogenesis and migration of endogenous stem cells were much more abundant in the MSC-CM group than in the MSC-CM + anti-VEGF group. Conclusions: VEGF is considered a crucial factor in MSC-CM, and MSC-CM is proposed to be an adequate therapeutic agent for bone regeneration with angiogenesis.

Role of $K^+$ Channels in the Vasodilation of Jagumhuan (좌금환(左金丸)의 혈관이완과 $K^+$ channel)

  • Son, Chang-Woo;Lee, Heon-Jae;Liou, Jia-Liang;Shin, Heung-Mook
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.19 no.3
    • /
    • pp.743-748
    • /
    • 2005
  • This study was performed for the investigation of vasodilatory efficacy and its underlying mechanisms of Jagumhuan(JGH), a herbal remedy. JGH produced completely endothelium-dependent relaxation and relaxed phenylephrine(PE)-precontracted aorta in a concentration dependent manner. The magnitude of relaxation was greater in PE induced contraction than that of KCl, suggesting involvement of $K^+$ channel in the relaxant effect. Both glibenclamide$(10^{-5}M)$, a $K_{ATP}$ channel inhibitor and indometacin, a cyclooxygenase inhibitor, completely prevented this relaxation. The relaxation effects of JGH, involve in part the release of nitric oxide from the endothelium as pretreatment with L-NAME, an NOS inhibitor, and methylene blue, a cGMP inhibitor, attenuated the responses by 62% and 58%, respectively. In addition, nitrite was produced by JGH in human aortic smooth muscle cells and human umbilical vein endothelial cells. The relaxant effect of JGH was also inhibited by 55.41% by tetraethylammonium(TEA; 5mM), a $K_{Ca}$ channel inhibitor. In the absence of extracellular $Ca^{2+}$, pre-incubation of the aortic rings with JGH significantly reduced the contraction by PE, suggesting that the relaxant action of the JGH includes inhibition of $Ca^{2+}$ release from intracellular stores. These results indicate that in rat thoracic aorta, JGH may induce vasodilation through ATP sensitive $K^+$ channel activation by prostacyclin production. However, the relaxant effect of JGH may also mediated in part by NO pathways and $Ca^{2+}$ activated $K^+$ channel.

Novel Anti-Angiogenic Activity in Rubus coreanus Miquel Water Extract Suppresses VEGF-Induced Angiogenesis

  • Kim, Eok-Cheon;Kim, Hye Jin;Kim, Tack-Joong
    • Biomedical Science Letters
    • /
    • v.20 no.4
    • /
    • pp.209-220
    • /
    • 2014
  • Vascular endothelial growth factor (VEGF) is a key factor involved in the induction of angiogenesis and has become an attractive target for anti-angiogenesis therapies. The purpose of this study was to elucidate the anti-angiogenic activity of Rubus coreanus Miquel water extract (RCME). Rubus coreanus Miquel has long been employed as a traditional medicine, and recent studies have demonstrated that it has measureable biological activities. Thus, we investigated for the first time the effect of RCME on angiogenesis and its underlying signaling pathways. The effects of RCME were tested on in vitro models of angiogenesis, namely, proliferation, migration, invasion and tube formation of human umbilical vein endothelial cells as well as an ex vivo model of vessel sprouting from the rat aorta in response to VEGF. We observed that VEGF-induced angiogenesis was strongly suppressed by RCME treatment compared to that of the control group. Moreover, we found that RCME inhibited VEGF-induced activation of matrix metalloproteinases and phosphorylation of extracellular signal-regulated kinase and p38, and also effectively inhibited phosphorylation of VEGF receptor 2. These results indicated that RCME inhibits angiogenesis by suppressing phosphorylation of the VEGF receptor and may be useful for the treatment of angiogenesis-dependent diseases such as cancer and diabetic retinopathy.

Role of microRNA-520h in 20(R)-ginsenoside-Rg3-mediated angiosuppression

  • Keung, Man-Hong;Chan, Lai-Sheung;Kwok, Hoi-Hin;Wong, Ricky Ngok-Shun;Yue, Patrick Ying-Kit
    • Journal of Ginseng Research
    • /
    • v.40 no.2
    • /
    • pp.151-159
    • /
    • 2016
  • Background: Ginsenoside-Rg3, the pharmacologically active component of red ginseng, has been found to inhibit tumor growth, invasion, metastasis, and angiogenesis in various cancer models. Previously, we found that 20(R)-ginsenoside-Rg3 (Rg3) could inhibit angiogenesis. Since microRNAs (miRNAs) have been shown to affect many biological processes, they might play an important role in ginsenoside-mediated angiomodulation. Methods: In this study, we examined the underlying mechanisms of Rg3-induced angiosuppression through modulating the miRNA expression. In the miRNA-expression profiling analysis, six miRNAs and three miRNAs were found to be up- or down-regulated in vascular-endothelial-growth-factor-induced human-umbilical-vein endothelial cells (HUVECs) after Rg3 treatment, respectively. Results: A computational prediction suggested that mature hsa-miR-520h (miR-520h) targets ephrin receptor (Eph) B2 and EphB4, and hence, affecting angiogenesis. The up-regulation of miR-520h after Rg3 treatment was validated by quantitative real-time polymerase chain reaction, while the protein expressions of EphB2 and EphB4 were found to decrease, respectively. The mimics and inhibitors of miR- 520h were transfected into HUVECs and injected into zebra-fish embryos. The results showed that overexpression of miR-520h could significantly suppress the EphB2 and EphB4 protein expression, proliferation, and tubulogenesis of HUVECs, and the subintestinal-vessel formation of the zebra fish. Conclusion: These results might provide further information on the mechanism of Rg3-induced angiosuppression and the involvement of miRNAs in angiogenesis.

Effects of Bikihuan (BKH) on anti-angiogenesis (비기환이 신생혈관형성 억제에 미치는 효과)

  • Kim, Dae-Jun;Park, Bong-Ky;Lee, Yeon-Wall;Yoo, Hwa-Seung;Han, Sung-Soo;Cho, Chong-Guan
    • Journal of Korean Traditional Oncology
    • /
    • v.13 no.1
    • /
    • pp.13-24
    • /
    • 2008
  • Objective: To evaluate the effects of Bikihaun (BKH) on angiogenesis. Method: We examined the anti-angiogenic effect of BKH in invasion assay model. We performed proliferation assay, migration assay, tube formation assay and Chicken Chorioallantoic Membrane (CAM) assay. Results: In proliferation assay, at lower dose under 125 ${\mu}g/m{\ell}$ anti-angiogenesis effect of the group treated BKH made no difference with the control group. But, at the dose of 250 ${\mu}g/m{\ell}$ or more anti-angiogenesis effect of the group treated BKH showed more effective as compared to the control group. In migration assay, BKH did not affect migration of vascular endothelial cell. In tube formation assay, at lower dose under 100 ${\mu}g/m{\ell}$ showed mild effect of anti-tube formation. But, at the dose of 1000 ${\mu}g/m{\ell}$ showed more effective anti-tube formation. In CAM assay, BKH showed anti-angiogenesis effect at the dose of 10 ${\mu}g/m{\ell}$. Conclusion: BKH has antiangiogenetic properties in vitro.

  • PDF