• Title/Summary/Keyword: Human umbilical cord mesenchymal stem cells

Search Result 50, Processing Time 0.036 seconds

Differentiation of Osteoblast Progenitor Cells from Human Umbilical Cord Blood (제대혈액에서 골조직 특이세포로의 분화)

  • Hong, Seung-Jin;Lee, Eun-A;Chae, Gue-Tae;Han, Hoon
    • IMMUNE NETWORK
    • /
    • v.2 no.3
    • /
    • pp.166-174
    • /
    • 2002
  • Background: Human umbilical cord bloods, which could be taken during the delivery are utilized as a source of hematopoietic stem cells. Also in cord blood, there are several kinds of stem cells such as endothelial and mesenchymal stem cells. Methods: We isolated the mesenchymal stem cells from human umbilical cord bloods and confirmed the differentiation of these cells into osteoblast progenitor cells. The mesenchymal stem cells derived from umbilical cord blood have the ability to differentiate into specific tissue cells, which is one of characteristics of stem cells. These cells were originated from the multipolar shaped cells out of adherent cells of the umbilical cord blood mononuclear cell culture. Results: The mesenchymal stem cells expressed cell surface antigen CD13, CD90, CD102, CD105, ${\alpha}$-smooth muscle actin and cytoplasmic antigen vimentine. Having cultrued these cells in bone formation media, we observed the formation of extracellular matrix and the expression of alkaline phosphatase and of mRNA of cbfa-1, ostoecalcin and type I collagen. Conclusion: From these results we concluded that the cells isolated from the umbilical cord blood were mesenchymal stem cells, which we could differentiate into osteoblast when cultured in bone formation media. In short, it is suggested that these cells could be used as a new source of stem cells, which has the probability to alternate the embryonic stem cells.

Allogeneic Transplantation of Mesenchymal Stem Cells from Human Umbilical Cord Blood

  • Lee, Jae-Kwon
    • Journal of Applied Biological Chemistry
    • /
    • v.50 no.4
    • /
    • pp.187-195
    • /
    • 2007
  • The cord blood serves as a vehicle for the transportation of oxygen and nutrients to the fetus. In the past, the human cord blood has generally been discarded after birth. However, numerous studies have described the regenerative ability of the cord blood cells in various incurable diseases. The umbilical cord blood (UCB)-derived stem cells are obtained through non-invasive methods that are not harmful to both the mother and the fetus. Furthermore, the cord blood stem cells are more immature than the adult stem cells and expand readily in vitro. The mesenchymal stem cells (MSCs) have the capacity to differentiate in vitro into various mesodermal (bone, cartilage, tendon, muscle, and adipose), endodermal (hepatocyte), and ectodermal (neurons) tissues. This review describes the immunological properties of the human UCB-MSCs to assess their potential usefulness in the allogeneic transplantation for the regenerative medicine.

ENDOTHELIAL PROGENITOR CELLS AND MESENCHYMAL STEM CELLS FROM HUMAN CORD BLOOD (제대혈 내피기원세포 및 간엽줄기세포의 분화에 대한 연구)

  • Kim, Eun-Seok;Kim, Hyun-Ok
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.31 no.1
    • /
    • pp.39-45
    • /
    • 2005
  • Stem cell therapy using mesenchymal stem cells(MSCs) transplantation have been paid attention because of their powerful proliferation and pluripotent differentiating ability. Although umbilical cord blood (UCB) is well known to be a rich source of hematopoietic stem cells with practical and ethical advantages, the presence of mesenchymal stem cells (MSCs) in UCB has been controversial and it remains to be validated. In this study, we examine the presence of MSCs in UCB harvests and the prevalence of them is compared to that of endothelial progenitor cells. For this, CD34+ and CD34- cells were isolated and cultured under the endothelial cell growth medium and mesenchymal stem cell growth medium respectively. The present study showed that ESC-like cells could be isolated and expanded from preterm UCBs but were not acquired efficiently from full-terms. They expressed CD14-, CD34-, CD45-, CD29+, CD44+, CD105+ cell surface marker and could differentiate into adipogenic and osteogenic lineages. Our results suggest that MSCs are fewer in full-term UCB compared to endothelial progenitor cells.

Proteomic Analysis of the Hydrophobic Fraction of Mesenchymal Stem Cells Derived from Human Umbilical Cord Blood

  • Jeong, Ju Ah;Lee, Yoon;Lee, Woobok;Jung, Sangwon;Lee, Dong-Seong;Jeong, Namcheol;Lee, Hyun Soo;Bae, Yongsoo;Jeon, Choon-Ju;Kim, Hoeon
    • Molecules and Cells
    • /
    • v.22 no.1
    • /
    • pp.36-43
    • /
    • 2006
  • Mesenchymal stem cells (MSCs) are promising candidates for cell therapy and tissue engineering, but their application has been impeded by lack of knowledge of their core biological properties. In order to identify MSC-specific proteins, the hydrophobic protein fraction was individually prepared from two different umbilical cord blood (UCB)-derived MSC populations; these were then subjected to two-dimensional (2D) gel electrophoresis and peptide mass fingerprinting matrix-assisted laser desorption/ionization (MALDI)-time of flight (TOF)-mass spectrometry (MS). Although the 2D gel patterns differed somewhat between the two samples, computer-assisted image analysis identified shared protein spots. 35 spots were reliably identified corresponding to 32 different proteins, many of which were chaperones. Based on their primary sub-cellular locations the proteins could be grouped into 6 categories: extracellular, cell surface, endoplasmic reticular, mitochondrial, cytoplasmic and cytoskeletal proteins. This map of the water-insoluble proteome may provide valuable insights into the biology of the cell surface and other compartments of human MSCs.

Differentiation of Dopaminergic Neurons from Mesenchymal-Like Stem Cells Derived from Human Umbilical Cord Vein

  • Kim, Ju-Ran;Lee, Jin-Ha;Jalin, Anjela Melinda;Lee, Chae-Yeon;Kang, Ah-Reum;Do, Byung-Rok;Kim, Hea-Kwon;Kam, Kyung-Yoon;Kang, Sung-Goo
    • Development and Reproduction
    • /
    • v.13 no.3
    • /
    • pp.173-181
    • /
    • 2009
  • One of the most extensively studied populations of multipotent adult stem cells are mesenchymal stem cells (MSCs). MSCs derived from the human umbilical cord vein (HUC-MSCs) are morphologically and immunophenotypically similar to MSCs isolated from bone marrow. HUC-MSCs are multipotent stem cells, differ from hematopoietic stem cells and can be differentiated into neural cells. Since neural tissue has limited intrinsic capacity of repair after injury, the identification of alternate sources of neural stem cells has broad clinical potential. We isolated mesenchymal-like stem cells from the human umbilical cord vein, and studied transdifferentiation-promoting conditions in neural cells. Dopaminergic neuronal differentiation of HUC-MSCs was also studied. Neural differentiation was induced by adding bFGF, EGF, dimethyl sulfoxide (DMSO) and butylated hydroxyanisole (BHA) in N2 medium and N2 supplement. The immunoreactive cells for $\beta$-tubulin III, a neuron-specific marker, GFAP, an astrocyte marker, or Gal-C, an oligodendrocyte marker, were found. HUC-MSCs treated with bFGF, SHH and FGF8 were differentiated into dopaminergic neurons that were immunopositive for tyrosine hydroxylase (TH) antibody. HUC-MSCs treated with DMSO and BHA rapidly showed the morphology of multipolar neurons. Both immunocytochemistry and RT-PCR analysis indicated that the expression of a number of neural markers including NeuroD1, $\beta$-tubulin III, GFAP and nestin was markedly elevated during this acute differentiation. While the stem cell markers such as SCF, C-kit, and Stat-3 were not expressed after neural differentiation, we confirmed the differentiation of dopaminergic neurons by TH/$\beta$-tubulin III positive cells. In conclusion, HUC-MSCs can be differentiated into dopaminergic neurons and these findings suggest that HUC-MSCs are alternative cell source of therapeutic treatment for neurodegenerative diseases.

  • PDF

Establishment of Stem-like Cells from Human Umbilical Cord Vein

  • Park, Seah;Kim, Kyung-Suk;Kim, Haekwon;Do, Byung-Rok;Kwon, Hyuck-Chan;Kim, Hyun-Ok;Im, Jung-Ae
    • Proceedings of the Korean Society of Developmental Biology Conference
    • /
    • 2003.10a
    • /
    • pp.78-78
    • /
    • 2003
  • Adult stem cells can make identical copies of themselves for long periods of time. They also give rise to many differentiated mature cell types that have characteristic morphology and specialized function. Human adult stem cells are the attractive raw materials for the cell/tissue therapy, however, it is not easy to get from the adult tissues. In the present study, we tried to isolate a cell population derived from human umbilical cord vein which has been discarded after birth. The cells were isolated after treatment of the umbilical vein with collagenase or trypsin. After 3 days of culture, two kinds of cell populations were found consisting of adherent cells with endothelial cell-like and fibroblast-like morphology, respectively. When these cells were subcultured 12 times over a period of 3 months, almost cells appeared uniformly to exhibit fibroblastoid morphology which was different from that of mesenchymal stem cells obtained from human bone marrow The results of RT-PCR analyses showed distinct expression of BMP-4, oct-4, and SCF genes but not of GATA, PAX-6 and Brachyury genes. On immunohistochemical staining, the cells were negative for the von Willebrand factor(vWF), alpha-smooth muscle actin and placental alkaline phosphatase. From these observations, it is suggested that stem-like cells might be present in human umbilical cord vein.

  • PDF

Human Umbilical Cord Mesenchymal Stem Cells Improve the Necrosis and Osteocyte Apoptosis in Glucocorticoid-Induced Osteonecrosis of the Femoral Head Model through Reducing the Macrophage Polarization

  • Gang Tian;Chuanjie Liu;Qi Gong;Zhiping Yu;Haitao Wang;Daoqiang Zhang;Haibo Cong
    • International Journal of Stem Cells
    • /
    • v.15 no.2
    • /
    • pp.195-202
    • /
    • 2022
  • Background and Objectives: Apoptosis is an outstanding determinant of glucocorticoid (GC)-induced osteonecrosis of the femoral head (ONFH). Human umbilical cord mesenchymal stem cells (hUC-MSCs) have been demonstrated to be associated with apoptosis in diseases models. However, the role of hUC-MSCs in GC-induced ONFH via regulating apoptosis still needs further study. Methods and Results: In the present study, a GC-induced ONFH model was built in vivo through a consecutive injection with lipopolysaccharide (LPS) and methylprednisolone. The necrosis and apoptosis of the femoral head was evaluated by histological and Terminal-deoxynucleoitidyl Transferase Mediated Nick End Labeling (TUNEL) assay. The level of collagen and TRAP positive cells were determined by Masson and TRAP staining, respectively. M1 macrophage polarization was assessed using immunofluorescence assay. The level of proinflammatory cytokines including tumor necrosis factor (TNF)-α, Interleukin (IL)-1β and IL-6 of femoral head was determined by enzyme-linked immunosorbent assay (ELISA) kits. The protein expression of AKT, mTOR, p-AKT and p-mTOR was detected using western blot assay. The results showed that hUC-MSCs treatment prominently promoted the GC-induced the decrease of the collagen level and the increase of TRAP positive cells. Besides, hUC-MSCs treatment decreased necrosis and apoptosis, macrophage polarization, the level of TNF-α, IL-1β and IL-6, the protein expression of p-AKT and p-mTOR, and the radio of p-AKT to AKT and p-mTOR to mTOR of femoral head in vivo. Conclusions: Therefore, the present study revealed that hUC-MSCs improved the necrosis and osteocyte apoptosis in GC-induced ONFH model through reducing the macrophage polarization, which was associated with the inhibition of AKT/mTOR signaling pathway.

Umbilical cord blood transplantation

  • Koo, Hong-Hoe;Ahn, Hyo-Seop
    • Clinical and Experimental Pediatrics
    • /
    • v.55 no.7
    • /
    • pp.219-223
    • /
    • 2012
  • Since the first umbilical cord blood transplantation (CBT) in 1998, cord blood (CB) has now become one of the most commonly used sources of hematopoietic stem cells for transplantation. CBT has advantages of easy procurement, no risk to donor, low risk of transmitting infections, immediate availability and immune tolerance allowing successful transplantation despite human leukocyte antigen disparity. Several studies have shown that the number of cells transplanted is the most important factor for engraftment in CBT, and it limits the wide use of CB in adult patients. New strategies for facilitating engraftment and reducing transplantation-related mortality are ongoing in the field of CBT and include the use of a reduced-intensity conditioning regimen, double-unit CBT, ex vivo expansion of CB, and co-transplantation of CB and mesenchymal stem cells. Recently, the results of two international studies with large sample sizes showed that CB is an acceptable alternative source of hematopoietic stem cells for adult recipients who lack human leukocyte antigen-matched adult donors. Along with the intensive researches, development in banking process of CB will amplify the use of CB and offer the chance for cure in more patients.

In vitro Expansion of Umbilical Cord Blood Derived Mesenchymal Stem Cells (UCB-MSCs) Under Hypoxic Conditions

  • Yang, Jungyun;Kwon, Jihye;Kim, Miyeon;Bae, Yunkyung;Jin, Hyejin;Park, Hohyun;Eom, Young Woo;Rhee, Ki-Jong
    • Biomedical Science Letters
    • /
    • v.21 no.1
    • /
    • pp.40-49
    • /
    • 2015
  • Mesenchymal stem cells (MSCs) have the ability to self-renew and differentiate into multi-lineage cells, thus highlighting the feasibility of using umbilical cord blood-derived MSCs (UCB-MSCs) for cell-therapy and tissueengineering. However, the low numbers of UCB-MSC derived from clinical samples requires that an ex vivo expansion step be implemented. As most stem cells reside in low oxygen tension environments (i.e., hypoxia), we cultured the UCBMSCs under 3% $O_2$ or 21% $O_2$ and the following parameters were examined: proliferation, senescence, differentiation and stem cell specific gene expression. UCB-MSCs cultured under hypoxic conditions expanded to significantly higher levels and showed less senescence compared to UCB-MSCs cultured under normoxic conditions. In regards to differentiation potential, UCB-MSCs cultured under hypoxic and normoxic conditions both underwent similar levels of osteogenesis as determined by ALP and von Kossa assay. Furthermore, UCB-MSCs cultured under hypoxic conditions exhibited higher expression of OCT4, NANOG and SOX2 genes. Moreover, cells expanded under hypoxia maintained a stem cell immnunophenotype as determined by flow cytometry. These results demonstrate that the expansion of human UCB-MSCs under a low oxygen tension microenvironment significantly improved cell proliferation and differentiation. These results demonstrate that hypoxic culture can be rapidly and easily implemented into the clinical-scale expansion process in order to maximize UCB-MSCs yield for application in clinical settings and at the same time reduce culture time while maintaining cell product quality.