• Title/Summary/Keyword: Human signal

Search Result 1,868, Processing Time 0.024 seconds

Development of Command Signal Generating Method for Assistive Wearable Robot of the Human Upper Extremity (상지 근력지원용 웨어러블 로봇을 위한 명령신호 생성 기법 개발)

  • Lee, Hee-Don;Yu, Seung-Nam;Lee, Seung-Hoon;Jang, Jae-Ho;Han, Jung-Soo;Han, Chang-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.2
    • /
    • pp.176-183
    • /
    • 2009
  • This paper proposes command signal generating method for a wearable robot using the force as the input signal. The basic concept of this system pursues the combination of the natural and sophisticated intelligence of human with the powerful motion capability of the robot. We define a task for the command signal generation to operate with the human body simultaneously, paying attention to comfort and ease of wear. In this study, we suggest a basic exoskeleton experimental system to evaluate a HRI(Human Robot Interface), selecting interfaces of arm braces on both wrists and a weight harness on the torso to connect the robot and human. We develop the HRI to provide a command for the robot motion. It connects between the human and the robot with the multi-axis load-cell, and it measures the relative force between the human and the robot. The control system calculates the trajectory of end-effector using this force signal. In this paper, we verify the performance of proposed system through the motion of elbow E/F(Extension/Flexion), the shoulder E/F and the shoulder Ab/Ad (Abduction/Adduction).

Recognition of Feature Points in ECG and Human Pulse using Wavelet Transform (웨이브렛 변환을 이용한 심전도와 맥파의 특징점 인식)

  • Kil Se-Kee;Shen Dong-Fan;Lee Eung-Hyuk;Min Hong-Ki;Hong Seung-Hong
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.55 no.2
    • /
    • pp.75-81
    • /
    • 2006
  • The purpose of this paper is to recognize the feature points of ECG and human pulse -which signal shows the electric and physical characteristics of heart respectively- using wavelet transform. Wavelet transform is proper method to analyze a signal in time-frequency domain. In the process of wavelet decomposition and reconstruction of ECG and human pulse signal, we removed the noises of signal and recognized the feature points of signal using some of decomposed component of signal. We obtained the result of recognition rate that is estimated about 95.45$\%$ in case of QRS complex, 98.08$\%$ in case of S point and P point and 92.81$\%$ in case of C point. And we computed diagnosis parameters such as RRI, U-time and E-time.

Development of Surface EMG Sensor Prototype and Its Application for Human Elbow Joint Angle Extraction (표면 근전도 센서 프로토타입 개발 및 인간의 팔꿈치 관절 각도 추출 응용)

  • Yu, Hyeon-Jae;Lee, Hyun-Chul;Choi, Young-Jin
    • The Journal of Korea Robotics Society
    • /
    • v.2 no.3
    • /
    • pp.205-211
    • /
    • 2007
  • In this paper, the prototype of surface EMG (ElectroMyoGram) sensor is developed for the robotic rehabilitation applications, and the developed sensor is composed of the electrodes, analog signal amplifiers, analog filters, ADC (analog to digital converter), and DSP (digital signal processor) for coding the application example. Since the raw EMG signal is very low voltage, it is amplified by about one thousand times. The artifacts of amplified EMG signal are removed by using the band-pass filter. Also, the processed analog EMG signal is converted into the digital form by using ADC embedded in DSP. The developed sensor shows approximately the linear characteristics between the amplitude values of the sensor signals measured from the biceps brachii of human upper arm and the joint angles of human elbow. Finally, to show the performance of the developed EMG sensor, we suggest the application example about the real-time human elbow motion acquisition by using the developed sensor.

  • PDF

A Development of the Method Measuring from Signal Propagation Direction using Passive Electrical Properties in Human Body (인체에 있어서 수동적 전기특성을 이용한 신호전달방향 계측법 개발)

  • Park Hyung-Jun;Yoon Jae-Hyun
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.55 no.8
    • /
    • pp.378-385
    • /
    • 2006
  • In this study, a method measuring signal propagation direction in human body was developed by using passive electrical properties of the body. The measured method of the signal propagation direction is to apply basic characteristic of electricity to the human body; when a voltage is set to a conducted medium, according to the polarity of the conducted voltage, the voltage rising or drop is generated. And using this concept, it is able to estimate the direction of electrical signal on the human body. The passive electrical properties were measured and the direction of signal propagation was estimated on the followings; between the flexor carpi radialis, between arms, between legs, between an arm and a leg, between the cervical vertebra and the upper limb, between the sacral vertebra and the leg, between the cervical vertebra and the tendon of triceps brachii, and between the sacral vertebra and the calcaneal tendon. As the result of experiments, the passive electrical properties were increased from l[Hz] to 50[kHz] of the inputted frequencies and showed at saturating tendency after that. And also, the estimated signal propagation directions using the developed method in this study agreed with the expected directions exactly at each part of the human body.

Image Enhancement Using Human Visual Perception (인간 시각의 인지 특성을 이용한 영상 화질 향상 방법)

  • Bang, Seangbae;Kim, Wonha
    • Journal of Broadcast Engineering
    • /
    • v.23 no.2
    • /
    • pp.206-217
    • /
    • 2018
  • We develop the signal processing method for adaptive implementing direction of signal and the frequency sensitivity of human visual system(HVS). Existing multiband energy scaling method makes ringing artifact because it does not consider signal direction. To solve this problem, we use block gradient for signal direction in addition to existing method. And we use the fact that frequency component of signal is more sensitive than value of signal over human eyes. we enhance the signal according to contrast sensitivity function(CSF) which is the model of frequency sensitivity of human eye. Compared that the existing analysis models only improve the efficiencies in the existing systems, the developed method can process the image signals to be more desirable and suitable to HVS.

A Compact Ka-Band Doppler Radar Sensor for Remote Human Vital Signal Detection

  • Han, Janghoon;Kim, Jeong-Geun;Hong, Songcheol
    • Journal of electromagnetic engineering and science
    • /
    • v.12 no.4
    • /
    • pp.234-239
    • /
    • 2012
  • This paper presents a compact K-band Doppler radar sensor for human vital signal detection that uses a radar configuration with only single coupler. The proposed radar front-end configuration can reduce the chip size and the additional RF power loss. The radar front-end IC is composed of a Lange coupler, VCO, and single balanced mixer. The oscillation frequency of the VCO is from 27.3 to 27.8 GHz. The phase noise of the VCO is -91.2 dBc/Hz at a 1 MHz offset frequency, and the output power is -4.8 dBm. The conversion gain of the mixer is about 11 dB. The chip size is $0.89{\times}1.47mm^2$. The compact Ka-band Doppler radar system was developed in order to demonstrate remote human vital signal detection. The radar system consists of a Ka-band Doppler radar module with a $2{\times}2$ patch array antenna, baseband signal conditioning block, DAQ system, and signal processing program. The front-end module size is $2.5{\times}2.5cm^2$. The proposed radar sensor can properly capture a human heartbeat and respiration rate at the distance of 50 cm.

A Method for Identifying Splice Sites and Translation Start Sites in Human Genomic Sequences

  • Kim, Ki-Bong;Park, Kie-Jung;Kong, Eun-Bae
    • BMB Reports
    • /
    • v.35 no.5
    • /
    • pp.513-517
    • /
    • 2002
  • We describe a new method for identifying the sequences that signal the start of translation, and the boundaries between exons and introns (donor and acceptor sites) in human mRNA. According to the mandatory keyword, ORGANISM, and feature key, CDS, a large set of standard data for each signal site was extracted from the ASCII flat file, gbpri.seq, in the GenBank release 108.0. This was used to generate the scoring matrices, which summarize the sequence information for each signal site. The scoring matrices take into account the independent nucleotide frequencies between adjacent bases in each position within the signal site regions, and the relative weight on each nucleotide in proportion to their probabilities in the known signal sites. Using a scoring scheme that is based on the nucleotide scoring matrices, the method has great sensitivity and specificity when used to locate signals in uncharacterized human genomic DNA. These matrices are especially effective at distinguishing true and false sites.

The manufacture of pre-amplifier for measuring the electrical signal of human body (인체 전기 신호 계측을 위한 pre-amplifier의 제작)

  • 박종환;천우영;박형준;박병림
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 1997.11a
    • /
    • pp.179-182
    • /
    • 1997
  • In this study, the pre-amplifiers were manufac-tured, which correspinds with the properties of signal source, For measuring the EMG, EEG, ECG and EOG's signal, which are generated at human body, the pre-amplifiers were manufactured in this studywhich was corresponding with the propertiies of dach signal source. So as to do, the bandwidth of filters and the amplitude of amplifiers were adaptively adjusted, according to signal source. Then, the usefulness was represented by showing the measured examples.

  • PDF

Image Enhancement Using The Contrast Sensitivity Function (Contrast Sensitivity 함수를 이용한 영상화질 개선 방법)

  • Bang, Seangbae;Kim, Wonha
    • Journal of Broadcast Engineering
    • /
    • v.20 no.2
    • /
    • pp.238-247
    • /
    • 2015
  • We develop the signal processing method for adaptive implementing direction of signal and the frequency sensitivity of human visual system(HVS). Existing multibnad energy scaling method makes ringing artifact because it does not consider signal direction. To solve this problem, we use block gradient for signal direction in addition to existing method. And we use the fact that frequency component of signal is more sensitive than value of signal over human eyes. we enhance the signal according to contrast sensitivity function(CSF) which is the model of frequency sensitivity of human eye. Compared that the existing analysis models only improve the efficiencies in the existing systems, the developed method can process the image signals to be more desirable and suitable to HVS.

A Study on Application of the Multi-layor Perceptron to the Human Sensibility Classifier with Eletroencephalogram (뇌파의 감성 분류기로서 다층 퍼셉트론의 활용에 관한 연구)

  • Kim, Dong Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.11
    • /
    • pp.1506-1511
    • /
    • 2018
  • This study presents a human sensibility evaluation method using neural network and multiple-template method on electroencephalogram(EEG). We used a multi-layer perceptron type neural network as the sensibility classifier using EEG signal. For our research objective, 10-channel EEG signals are collected from the healthy subjects. After the necessary preprocessing is performed on the acquired signals, the various EEG parameters are estimated and their discriminating performance is evaluated in terms of pattern classification capability. In our study, Linear Prediction(LP) coefficients are utilized as the feature parameters extracting the characteristics of EEG signal, and a multi-layer neural network is used for indicating the degree of human sensibility. Also, the estimation for human comfortableness is performed by varying temperature and humidity environment factors and our results showed that the proposed scheme achieved good performances for evaluation of human sensibility.