• Title/Summary/Keyword: Human robot

Search Result 1,374, Processing Time 0.026 seconds

A study of human grasping ability and its application to a robot hand

  • Kim, Ilhwan;Inooka, Hikaru
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10b
    • /
    • pp.1774-1778
    • /
    • 1991
  • In this paper, we discuss the smooth hand-over of an object from a man to a robot and vice versa. In order for a robot to grasp an object or release a grasped object stably without using object model, as a man does, one of the basic approaches is the physiological method motivated by the study of human hands. So, we analyze human's grasping behavior by measuring grasp and friction forces simultaneously as a man grasps a experimental device which is designed for grasping or hand-over. Also, we investigate two methods that can predict when and bow fingers will slip upon a grasped object. And then, we propose a method of the hand-over of an object between a man and a robot by applying human's capability to a robot hand control.

  • PDF

Implementation of an Embedded System for an Interaction between Robot Arm and Human Arm Based on Force Control (힘 제어 기반의 로봇 팔과 인간 팔의 상호 작용을 위한 임베디드 시스템 설계)

  • Jeon, Hyo-Won;Jung, Seul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.11
    • /
    • pp.1096-1101
    • /
    • 2009
  • In this paper, an embedded system has been designed for force control application to interact between a robot arm and a human operator. Force induced by the human operator is converted to the desired position information for the robot to follow. For smooth operations, the impedance force control algorithm is utilized to represent interaction between the robot and the human operator by filtering the force. To improve the performance of position control of the robot arm, a velocity term has been obtained and tested by several filters. A PD controller for position control has been implemented on an FPGA as well. Experimental studies are conducted with the ROBOKER to test the functionality of the designed hardware.

The Implementation of Human-Interactive Motions for a Quadruped Robot Using Genetic Algorithm (유전알고리즘을 이용한 사족 보행로봇의 인간친화동작 구현)

  • Kong, Jung-Shick;Lee, In-Koo;Lee, Boo-Hee
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.8
    • /
    • pp.665-672
    • /
    • 2002
  • This paper deals with the human-interactive actions of a quadruped robot by using Genetic Algorithm. In case we have to work out the designed plan under the special environments, our robot will be required to have walking capability, and patterns with legs, which are designed like gaits of insect, dog and human. Our quadruped robot (called SERO) is capable of not only the basic actions operated with sensors and actuators but also the various advanced actions including walking trajectories, which are generated by Genetic Algorithm. In this paper, the body and the controller structures are proposed and kinematics analysis are performed. All of the suggested motions of SERO are generated by PC simulation and implemented in real environment successfully.

Gait Pattern Generation Algorithm for a Biped Robot with Toes

  • Min, Kwan-Sik;Ahn, Cheol-Ki;Lee, Min-Cheol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.107.4-107
    • /
    • 2002
  • One of the most important functions of a biped robot is to walk naturally like human. For the human being, toe is very important joint in order to walk naturally. Thus, for a biped robot, the existence of toe joint much affects gait pattern generation and contributes to natural walking, which is similar to the human gait or faster walking like running. Since a conventional biped robot has the feet which consist of soles without toes, it seems difficult to walk naturally. For realizing the gait to be similar to human one, toes are necessary to the biped robot. In this paper, the effect of the toe joint for gait pattern generation is studied. In order to find the effect of toe joint, a biped r...

  • PDF

Human-Sensitive Mot ion Interpretation of Emotional Robot "Rai" (감성 로봇 "라이"의 감성적 동작 구현)

  • 김연훈;이동연;김병수;곽윤근
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2002.05a
    • /
    • pp.327-332
    • /
    • 2002
  • We made a human-sensitive motion interpretation to the interactive emotional robot, "Rai" of which the mechanism design was carried out and completed. Kinematic system of this emotional robot mainly consists of a body and a head. The body contains the total control units , the communicat ion modules and also two wheels and motors for main driving which make kinds of motions 1 ike the inverted pendulum. This robot system is designed under the concept on the human-friendly mot ion and react ion wi th humans around living room and office environments. Therefore, various scenarios are constructed in order to enable the emotional expressions at those places. Especially, we interpreted technically-possible motions while accommodating to the scenarios constructed. And we performed some experiments to make sere of the possibility of the motion interpretation.

  • PDF

Robot-Human Task Sharing System for Assembly Process (조립 공정을 위한 로봇-사람 간 작업 공유 시스템)

  • Minwoo Na;Tae Hwa Hong;Junwan Yun;Jae-Bok Song
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.4
    • /
    • pp.419-426
    • /
    • 2023
  • Assembly tasks are difficult to fully automate due to uncertain errors occurring in unstructured environments. When assembling parts such as electrical connectors, advances in grasping and assembling technology have made it possible for the robot to assemble the connectors without the aid of humans. However, some parts with tight assembly tolerances should be assembled by humans. Therefore, task sharing with human-robot interaction is emerging as an alternative. The goal of this concept is to achieve shared autonomy, which reduces the efforts of humans when carrying out repetitive tasks. In this study, a task-sharing robotic system for assembly process has been proposed to achieve shared autonomy. This system consists of two parts, one for robotic grasping and assembly, and the other for monitoring the process for robot-human task sharing. Experimental results show that robots and humans share tasks efficiently while performing assembly tasks successfully.

A new human-robot interaction method using semantic symbols

  • Park, Sang-Hyun;Hwang, Jung-Hoon;Kwon, Dong-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.2005-2010
    • /
    • 2004
  • As robots become more prevalent in human daily life, situations requiring interaction between humans and robots will occur more frequently. Therefore, human-robot interaction (HRI) is becoming increasingly important. Although robotics researchers have made many technical developments in their field, intuitive and easy ways for most common users to interact with robots are still lacking. This paper introduces a new approach to enhance human-robot interaction using a semantic symbol language and proposes a method to acquire the intentions of robot users. In the proposed approach, each semantic symbol represents knowledge about either the environment or an action that a robot can perform. Users'intentions are expressed by symbolized multimodal information. To interpret a users'command, a probabilistic approach is used, which is appropriate for interpreting a freestyle user expression or insufficient input information. Therefore, a first-order Markov model is constructed as a probabilistic model, and a questionnaire is conducted to obtain state transition probabilities for this Markov model. Finally, we evaluated our model to show how well it interprets users'commands.

  • PDF

Implementation of Intelligent and Human-Friendly Home Service Robot (인간 친화적인 가정용 지능형 서비스 로봇 구현)

  • Choi, Woo-Kyung;Kim, Seong-Joo;Kim, Jong-Soo;Jeo, Jae-Yong;Jeon, Hong-Tae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.6
    • /
    • pp.720-725
    • /
    • 2004
  • Robot systems have applied to manufacturing or industrial field for reducing the need for human presence in dangerous and/or repetitive tasks. However, robot applications are transformed from industrial field to human life in recent tendency Nowadays, final goal of robot is to make a intelligent robot that can understand what human say and learn by itself and have internal emotion. For example Home service robots are able to provice functions such as security, housework, entertainment, education and secretary To provide various functions, home robots need to recognize human`s requirement and environment, and it is indispensable to use artificial intelligence technology for implementation of home robots. In this paper, implemented robot system takes data from several sensors and fuses the data to recognize environment information. Also, it can select a proper behavior for environment using soft computing method. Each behavior is composed with intuitive motion and sound in order to let human realize robot behavior well.

Biped robot gait pattern generation using frequency feature of human's gait torque analysis (인간의 보행 회전력의 주파수 특징 분석을 이용한 이족로봇의 적응적 보행 패턴 생성)

  • Ha, Seung-Suk;Han, Young-Joon;Hahn, Hern-Soo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.1
    • /
    • pp.100-108
    • /
    • 2008
  • This paper proposes a method of adaptively generating a gait pattern of biped robot. The gait synthesis is based on human's gait pattern analysis. The proposed method can easily be applied to generate the natural and stable gait pattern of any biped robot. To analyze the human's gait pattern, sequential images of the human's gait on the sagittal plane are acquired from which the gait control values are extracted. The gait pattern of biped robot on the sagittal plane is adaptively generated by a genetic algorithm using the human's gait control values. However, galt trajectories of the biped robot on the sagittal Plane are not enough to construct the complete gait pattern because the bided robot moves on 3-dimension space. Therefore, the gait pattern on the frontal plane, generated from Zero Moment Point (ZMP), is added to the gait one acquired on the sagittal plane. Consequently, the natural and stable walking pattern for the biped robot is obtained.

Associative Motion Generation for Humanoid Robot Reflecting Human Body Movement

  • Wakabayashi, Akinori;Motomura, Satona;Kato, Shohei
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.12 no.2
    • /
    • pp.121-130
    • /
    • 2012
  • This paper proposes an intuitive real-time robot control system using human body movement. Recently, it has been developed that motion generation for humanoid robots with reflecting human body movement, which is measured by a motion capture. However, in the existing studies about robot control system by human body movement, the detailed structure information of a robot, for example, degrees of freedom, the range of motion and forms, must be examined in order to calculate inverse kinematics. In this study, we have proposed Associative Motion Generation as humanoid robot motion generation method which does not need the detailed structure information. The associative motion generation system is composed of two neural networks: nonlinear principal component analysis and Jordan recurrent neural network, and the associative motion is generated with the following three steps. First, the system learns the correspondence relationship between an indication and a motion using training data. Second, associative values are extracted for associating a new motion from an unfamiliar indication using nonlinear principal component analysis. Last, the robot generates a new motion through calculation by Jordan recurrent neural network using the associative values. In this paper, we propose a real-time humanoid robot control system based on Associative Motion Generation, that enables user to control motion intuitively by human body movement. Through the task processing and subjective evaluation experiments, we confirmed the effective usability and affective evaluations of the proposed system.