• Title/Summary/Keyword: Human pluripotent stem cell

Search Result 104, Processing Time 0.029 seconds

Establishment of Mouse Embryonic Stem Cell-like Cells from In Vitro Fertilized Embryos (체외수정 생쥐 배아에서의 배아 줄기세포 확립)

  • Shin, Yong-Moon;Park, Yong-Bin;Kim, Hee-Sun;Oh, Sun-Kyung;Chun, Dae-Woo;Suh, Chang-Suk;Choe, Young-Min;Kim, Jung-Gu;Lee, Jin-Yong;Kim, Seok-Hyun
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.29 no.1
    • /
    • pp.1-12
    • /
    • 2002
  • Objective: In order to acquire the technique for the establishment of human embryonic stem cells (ESe) derived from the human frozen-thawed embryos produced in IVF-ET program, this study was performed to establish mouse ESC derived from the in vitro fertilized embryos. Materials and Methods: After Fl hybrid (C57BL female $\times$ CBA mael) female mice were superovulated with PMSG and hCG treatment, their oocytes were retrieved and inseminated, and the fertilized embryos were cultured for 96-120 hours until the expected stages of blastocysts were obtained. To isolate the inner cell mass (ICM), either the blastocysts were treated with immunosurgery, or the whole embryos were cultured for 4 days. Isolated ICMs were then cultured onto STO feeder cell layer, and the resultant ICM colonies were subcultured with trypsin-EDTA treatment. During the subculture process, ESC-like cell colonies were observed with phase contrast microscopy. To identify ESC in the subcultured ESC-like cell colonies, alkaline phosphatase activity and Oct-4 (octamer-binding transcription factor-4) expression were examined by immunohistochemistry and RT-PCR, respectively. To examine the spontaneous differentiation, ESC-like cell colonies were cultured without STO feeder cell layer and leukemia inhibitory factor (LIF). Results: Seven ESC-like cell lines were established from ICMs isolated from the in vitro fertilized embryos. According to the developmental stage, the growth of ICMs isolated from the expanded blastocysts was significantly better than that of ICMs isolated from the hatched blastocysts (80.3% vs. 58.7%, p<0.05). ESC-like cell colonies were only obtained from ICMs of expanded blastocysts. However, the ICMs isolated from the embryos treated with immunosurgery were poorly grown and frequently differentiated during the culture process. The established ESC-like cell colonies were positively stained with alkaline phosphatase and expressed Oct-4, and their morphology resembled that observed in the previously reported mouse ESC. In addition, following the extended in vitro culture process, they maintained their expression of cell surface markers characteristic of the pluripotent stem cells such as alkaline phosphatase and Oct-4. When cultured without STO feeder cell layer and LIF, they were spontaneously differentiated into the various types of cells. Conclusion: The findings of this study suggest that the establishment of mouse ESC can be successfully derived from the in vitro fertilized embryos. The established ESC-like cells expressed the cell surface markers characteristic of the pluripotent stem cells and spontaneously differentiated into the various types of cells.

OCT4B Isoform Promotes Anchorage-Independent Growth of Glioblastoma Cells

  • Choi, Sang-Hun;Kim, Jun-Kyum;Jeon, Hee-Young;Eun, Kiyoung;Kim, Hyunggee
    • Molecules and Cells
    • /
    • v.42 no.2
    • /
    • pp.135-142
    • /
    • 2019
  • OCT4, also known as POU5F1 (POU domain class 5 transcription factor 1), is a transcription factor that acts as a master regulator of pluripotency in embryonic stem cells and is one of the reprogramming factors required for generating induced pluripotent stem cells. The human OCT4 encodes three isoforms, OCT4A, OCT4B, and OCT4B1, which are generated by alternative splicing. Currently, the functions and expression patterns of OCT4B remain largely unknown in malignancies, especially in human glioblastomas. Here, we demonstrated the function of OCT4B in human glioblastomas. Among the isoform of OCT4B, OCT4B-190 ($OCT4B^{19kDa}$) was highly expressed in human glioblastoma stem cells and glioblastoma cells and was mainly detected in the cytoplasm rather than the nucleus. Overexpression of $OCT4B^{19kDa}$ promoted colony formation of glioblastoma cells when grown in soft agar culture conditions. Clinical data analysis revealed that patients with gliomas that expressed OCT4B at high levels had a poorer prognosis than patients with gliomas that expressed OCT4B at low levels. Thus, $OCT4B^{19kDa}$ may play a crucial role in regulating cancer cell survival and adaption in a rigid environment.

Multilayer Coating with Red Ginseng Dietary Fiber Improves Intestinal Adhesion and Proliferation of Probiotics in Human Intestinal Epithelial Models

  • Ye Seul Son;Mijin Kwon;Naeun Son;Sang-Kyu Kim;Mi-Young Son
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.10
    • /
    • pp.1309-1316
    • /
    • 2023
  • To exert their beneficial effects, it is essential for the commensal bacteria of probiotic supplements to be sufficiently protected as they pass through the low pH environment of the stomach, and effectively colonize the intestinal epithelium downstream. Here, we investigated the effect of a multilayer coating containing red ginseng dietary fiber, on the acid tolerance, and the adhesion and proliferation capacities of three Lactobacillus strains (Limosilactobacillus reuteri KGC1901, Lacticaseibacillus casei KGC1201, Limosilactobacillus fermentum KGC1601) isolated from Panax ginseng, using HT-29 cells, mucin-coated plates, and human pluripotent stem cell-derived intestinal epithelial cells as in vitro models of human gut physiology. We observed that the multilayer-coated strains displayed improved survival rates after passage through gastric juice, as well as high adhesion and proliferation capacities within the various gut epithelial systems tested, compared to their uncoated counterparts. Our findings demonstrated that the multilayer coat effectively protected commensal microbiota and led to improved adhesion and colonization of intestinal epithelial cells, and consequently to higher probiotic efficacy.

Identification of Candidate Porcine miRNA-302/367 Cluster and Its Function in Somatic Cell Reprogramming

  • Son, Dong-Chan;Hwang, Jae Yeon;Lee, Chang-Kyu
    • Reproductive and Developmental Biology
    • /
    • v.38 no.2
    • /
    • pp.79-84
    • /
    • 2014
  • MicroRNAs (miRNAs) are approximately 22 nucleotides of small noncoding RNAs that control gene expression at the posttranscriptional level through translational inhibition and destabilization of their target mRNAs. The miRNAs are phylogenetically conserved and have been shown to be instrumental in a wide variety of key biological processes including cell cycle regulation, apoptosis, metabolism, imprinting, and differentiation. Recently, a paper has shown that expression of the miRNA-302/367 cluster expressed abundantly in mouse and human embryonic stem cells (ESCs) can directly reprogram mouse and human somatic cells to induced pluripotent stem cells (iPSCs) efficiently in the absence of any of the four factors, Oct4, Sox2, c-Myc, and Klf4. To apply this efficient method to porcine, we analyzed porcine genomic sequence containing predicted porcine miRNA-302/367 cluster through ENSEMBL database, generated a non-replicative episomal vector system including miRNA-302/367 cluster originated from porcine embryonic fibroblasts (PEF), and tried to make porcine iPSCs by transfection of the miRNA-302/367 cluster. Colonies expressing EGFP and forming compact shape were found, but they were not established as iPSC lines. Our data in this study show that pig miRNA-302/367 cluster could not satisfy requirement of PEF reprogramming conditions for pluripotency. To make pig iPSC lines by miRNA, further studies on the role of miRNAs in pluripotency and new trials of transfection with conventional reprogramming factors are needed.

Enhanced Green Fluorescent Protein Gene under the Regulation of Human Oct4 Promoter as a Marker to Identify Reprogramming of Human Fibroblasts

  • Heo, Soon-Young;Ahn, Kwang-Sung;Kang, Jee-Hyun;Shim, Ho-Sup
    • Reproductive and Developmental Biology
    • /
    • v.32 no.2
    • /
    • pp.135-140
    • /
    • 2008
  • Recent studies on nuclear transfer and induced pluripotent stem cells have demonstrated that differentiated somatic cells can be returned to the undifferentiated state by reversing their developmental process. These epigenetically reprogrammed somatic cells may again be differentiated into various cell types, and used for cell replacement therapies through autologous transplantation to treat many degenerative diseases. To date, however, reprogramming of somatic cells into undifferentiated cells has been extremely inefficient. Hence, reliable markers to identify the event of reprogramming would assist effective selection of reprogrammed cells. In this study, a transgene construct encoding enhanced green fluorescent protein (EGFP) under the regulation of human Oct4 promoter was developed as a reporter for the reprogramming of somatic cells. Microinjection of the transgene construct into pronuclei of fertilized mouse eggs resulted in the emission of green fluorescence, suggesting that the undifferentiated cytoplasmic environment provided by fertilized eggs induces the expression of EGFP. Next, the transgene construct was introduced into human embryonic fibroblasts, and the nuclei from these cells were transferred into enucleated porcine oocytes. Along with their in vitro development, nuclear transfer embryos emitted green fluorescence, suggesting the reprogramming of donor nuclei in nuclear transfer embryos. The results of the present study demonstrate that expression of the transgene under the regulation of human Oct4 promoter coincides with epigenetic reprogramming, and may be used as a convenient marker that non-invasively reflects reprogramming of somatic cells.

Differentiation of Human ES Cells to Endodermal Lineage Cells

  • Sung, Ji-Hye;Lim, Chun-Kyu;Cho, Jae-Won;Park, Hye-Won;Koong, Mi-Kyoung;Yoon, Hyun-Soo;Jun, Jin-Hyun
    • Proceedings of the Korean Society of Developmental Biology Conference
    • /
    • 2003.10a
    • /
    • pp.60-60
    • /
    • 2003
  • Embryonic stem (ES) cells have property of self-renewal and can differentiate into the cells of all three primary germ layers. Recently, many growth factors, alteration of culture condition and gene modifications have been used to differentiate mouse and human ES cells into specific cell types. This study was performed to evaluate the differentiation protocol for human ES cells to the endodermal lineage cells. Human ES cells (Miz-hESl ) were cultured on STO feeder layer mitotically inactivated with mitemycin C, and embryoid bodies (EBs) were formed by suspension culture. Differentiation protocol of EBs consisted of three steps: stage I, culture of EBs for 6 days with ITSFn medium; stage II, culture of stage I cells for 8 days with N2 medium ; stage III, culture of stage II cells for 22 days with N2 medium. mRNA levels of the endodermal lineage differentiation genes were analyzed by semi- quantitative RT-PCR. The Oct-4 expression, a marker of the pluripotent state, was detected in undifferentiated human ES cells but progressively decreased after EBs formation. Differentiating human ES cells expressed marker genes of endodermal differentiation and pancreatic islet cells. GATA4, a-fetoprotein, Glut-2, and Ngn3 were expressed in all stages. However, albumin and insulin were expressed in only stage III cells. The human ES cells can be differentiated into endodermal lineage cells by multiple step culture system using various supplements. We are developing the more effective protocols for guided differentiation of human ES cells.

  • PDF

New in vitro multiple cardiac ion channel screening system for preclinical Torsades de Pointes risk prediction under the Comprehensive in vitro Proarrhythmia Assay concepta

  • Jin Ryeol An;Seo-Yeong Mun;In Kyo Jung;Kwan Soo Kim;Chan Hyeok Kwon;Sun Ok Choi;Won Sun Park
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.27 no.3
    • /
    • pp.267-275
    • /
    • 2023
  • Cardiotoxicity, particularly drug-induced Torsades de Pointes (TdP), is a concern in drug safety assessment. The recent establishment of human induced pluripotent stem cell-derived cardiomyocytes (human iPSC-CMs) has become an attractive human-based platform for predicting cardiotoxicity. Moreover, electrophysiological assessment of multiple cardiac ion channel blocks is emerging as an important parameter to recapitulate proarrhythmic cardiotoxicity. Therefore, we aimed to establish a novel in vitro multiple cardiac ion channel screening-based method using human iPSC-CMs to predict the drug-induced arrhythmogenic risk. To explain the cellular mechanisms underlying the cardiotoxicity of three representative TdP high- (sotalol), intermediate- (chlorpromazine), and low-risk (mexiletine) drugs, and their effects on the cardiac action potential (AP) waveform and voltage-gated ion channels were explored using human iPSC-CMs. In a proof-of-principle experiment, we investigated the effects of cardioactive channel inhibitors on the electrophysiological profile of human iPSC-CMs before evaluating the cardiotoxicity of these drugs. In human iPSC-CMs, sotalol prolonged the AP duration and reduced the total amplitude (TA) via selective inhibition of IKr and INa currents, which are associated with an increased risk of ventricular tachycardia TdP. In contrast, chlorpromazine did not affect the TA; however, it slightly increased AP duration via balanced inhibition of IKr and ICa currents. Moreover, mexiletine did not affect the TA, yet slightly reduced the AP duration via dominant inhibition of ICa currents, which are associated with a decreased risk of ventricular tachycardia TdP. Based on these results, we suggest that human iPSC-CMs can be extended to other preclinical protocols and can supplement drug safety assessments.

The Study on Vitrification and Ultrarapid Thawing of Human Embryonic Stem Cells (인간 배아 줄기세포의 초자화 동결 및 초급속 융해에 관한 연구)

  • Moon, Shin-Yong;Park, Yong-Bin;Kim, Hee-Sun;Sung, Ki-Chung;Oh, Sun-Kyung;Chun, Dae-Woo;Suh, Chang-Suk;Choi, Young-Min;Kim, Jung-Gu;Lee, Jin-Yong;Kim, Seok-Hyun
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.29 no.1
    • /
    • pp.13-20
    • /
    • 2002
  • Objective: This study was carried out to establish the effectiveness of the vitrification method and the optimal cryoprotectants in the cryopreservation of human embryonic stem cells (ESC). Materials and Methods: Human ESC clumps established at Seoul National University Hospital (SNUhES 1) were cryopreserved with the vitrification method using the EM grid. EDS and EFS40 were used as vitrification solutions. Results: Between the EDS and EFS40 groups, there was no significant difference in the recovery rate after cryopreservation of human ESC. The formation rates of ESC colonies in the vitrified groups were significantly lower than those in the control ESC group (p<0.05, p<0.05). In addition, the formation rate of ESC colonies in the EDS group was significantly higher than that in the EFS40 group (p<0.05). The ESC colonies in the vitrified groups were significantly smaller after culture duration of 2 and 4 days, respectively, compared with the control ESC group (p<0.1, p<0.05). However, these effects could be reduced to nonsignificant level by the additional culture of ESC colonies. The vitrified human ESC retained the properties of pluripotent cells, including the expression of cell surface. markers for the undifferentiated cells such as alkaline phosphatase and SSEA-4 (stage-specific embryonic antigen-4), and the expression of transcription factor Oct-4 (octamer-binding transcription factor-4), and the normal karyotype. Conclusion: The vitrification method using the EM grid and EDS solution was confirmed to be very effective for the cryopreservation of human ESC.

Antitumor profiles and cardiac electrophysiological effects of aurora kinase inhibitor ZM447439

  • Lee, Hyang-Ae;Kwon, Miso;Kim, Hyeon-A;Kim, Ki-Suk
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.23 no.5
    • /
    • pp.393-402
    • /
    • 2019
  • Aurora kinases inhibitors, including ZM447439 (ZM), which suppress cell division, have attracted a great deal of attention as potential novel anti-cancer drugs. Several recent studies have confirmed the anti-cancer effects of ZM in various cancer cell lines. However, there have been no studies regarding the cardiac safety of this agent. We performed several cytotoxicity, invasion and migration assays to examine the anti-cancer effects of ZM. To evaluate the potential effects of ZM on cardiac repolarisation, whole-cell patch-clamp experiments were performed with human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) and cells with heterogeneous cardiac ion channel expression. We also conducted a contractility assay with rat ventricular myocytes to determine the effects of ZM on myocardial contraction and/or relaxation. In tests to determine in vitro efficacy, ZM inhibited the proliferation of A549, H1299 (lung cancer), MCF-7 (breast cancer) and HepG2 (hepatoma) cell lines with $IC_{50}$ in the submicromolar range, and attenuated the invasive and metastatic capacity of A549 cells. In cardiac toxicity testing, ZM did not significantly affect $I_{Na}$, $I_{Ks}$ or $I_{K1}$, but decreased $I_{hERG}$ in a dose-dependent manner ($IC_{50}$: $6.53{\mu}M$). In action potential (AP) assay using hiPSC-CMs, ZM did not induce any changes in AP parameters up to $3{\mu}M$, but it at $10{\mu}M$ induced prolongation of AP duration. In summary, ZM showed potent broad-spectrum anti-tumor activity, but relatively low levels of cardiac side effects compared to the effective doses to tumor. Therefore, ZM has a potential to be a candidate as an anti-cancer with low cardiac toxicity.

Human Embryonic Stem Cell-derived Neuroectodermal Spheres Revealing Neural Precursor Cell Properties (인간 배아줄기세포 유래 신경전구세포의 특성 분석)

  • Han, Hyo-Won;Kim, Jang-Hwan;Kang, Man-Jong;Moon, Seong-Ju;Kang, Yong-Kook;Koo, Deog-Bon;Cho, Yee-Sook
    • Development and Reproduction
    • /
    • v.12 no.1
    • /
    • pp.87-95
    • /
    • 2008
  • Neural stem/precursor derived from pluripotent human embryonic stem cells (hESCs) has considerable therapeutic potential due to their ability to generate various neural cells which can be used in cell-replacement therapies for neurodegenerative diseases. However, production of neural cells from hESCs remains technically very difficult. Understanding neural-tube like rosette characteristic neural precursor cells from hESCs may provide useful information to increase the efficiency of hESC neural differentiation. Generally, neural rosettes were derived from differentiating hEBs in attached culture system, however this is time-consuming and complicated. Here, we examined if neural rosettes could be formed in suspension culture system by bypassing attachment requirement. First, we tested whether the size of hESC clumps affected the formation of human embryonic bodies (hEBs) and neural differentiation. We confirmed that hEBs derived from $500{\times}500\;{\mu}m$ square sized hESC clumps were effectively differentiated into neural lineage than those of the other sizes. To induce the rosette formation, regular size hEBs were derived by incubation of hESC clumps($500{\times}500\;{\mu}m$) in EB medium for 1 wk in a suspended condition on low attachment culture dish and further incubated for additional $1{\sim}2$ wks in neuroectodermal sphere(NES)-culture medium. We observed the neural tube-like rosette structure from hEBs after $7{\sim}10$ days of differentiation. Their identity as a neural precursor cells was assessed by measuring their expressions of neural precursor markers(Vimentin, Nestin, MSI1, MSI2, Prominin-1, Pax6, Sox1, N-cadherin, Otx2, and Tuj1) by RT-PCR and immunofluorescence staining. We also confirmed that neural rosettes could be terminally differentiated into mature neural cell types by additional incubation for $2{\sim}6$ wks with NES medium without growth factors. Neuronal(Tuj1, MAP2, GABA) and glial($S100{\beta}$ and GFAP) markers were highly expressed after $2{\sim}3$ and 4 wks of incubation, respectively. Expression of oligodendrocyte markers O1 and CNPase was significantly increased after $5{\sim}6$ wks of incubation. Our results demonstrate that rosette forming neural precursor cells could be successfully derived from suspension culture system and that will not only help us understand the neural differentiation process of hESCs but also simplify the derivation process of neural precursors from hESCs.

  • PDF