• Title/Summary/Keyword: Human neuroblastoma cells

Search Result 154, Processing Time 0.025 seconds

Effects of Ionizing Radiation and Cisplatin on Peroxiredoxin I & II Expression and Survival Rate in Human Neuroblastoma and Rat Fibroblast Cells (전리방사선과 Cisplatin이 신경아세포종세포와 섬유모세포에서 Peroxiredoxin I과 II 발현 및 세포생존율에 미치는 영향)

  • Kim, Sung-Hwan;Yoon, Sei-Chul
    • Radiation Oncology Journal
    • /
    • v.24 no.4
    • /
    • pp.272-279
    • /
    • 2006
  • $\underline{Purpose}$: This study investigated the influence of irradiation and cisplatin on PrxI & PrxII expression and on their survival rates (SR) in SK-N-BE2C and Rat2 cell lines. $\underline{Materials\;and\;Methods}$: The amount of PrxI & PrxII production with or without N-acetyl-L-cysteine (NAC) pretreatment was studied using a western blot after 20 Gy irradiation to determine the degree of inhibition of ROS accumulation. In addition, the amount of PrxI & PrxII production after cisplatin and after combination with cisplatin and 20 Gy irradiation was studied. The SRs of the cell lines in SK-N-BE2C and Rat 2 cells, applied with 20 Gy irradiation only, with various concentrations of cisplatin and with the combination of both, were studied. The 20 Gy irradiation-only group and the combination group were each subdivided according to NAC pretreatment, and corresponding SRs were observed at 2, 6, 12 and 48 hours after treatment. $\underline{Results}$: Compared with the control group, the amount of PrxI in SK-N-BE2C increased up to 60 minutes after irradiation and slightly increased after irradiation with NAC pretreatment 60 minutes. It did not increase in Rat2 after irradiation regardless of NAC pretreatment. PrxII in SK-N-BE2C and Rat2 was not increased after irradiation regardless of NAC pretreatment. The amounts of PrxI and PrxII in SK-N-BE2C and Rat2 were not increased either with the cisplatin-only treatment or the combination treatment with cisplatin and irradiation. SRs of irradiation group with or without NAC pretreatment and the combination group with or without NAC pretreatment were compared with each other in SK-N-BE2C and Rat2. SR was significantly high for the group with increased amount of PrxI, NAC pretreatment and lower the cisplatin concentration. SR of the group in SK-N-BE2C which had irradiation with NAC pretreatment tended to be slightly higher than the group who had irradiation without NAC pretreatment. SR of the group in Rat2 which had irradiation with NAC pretreatment was significantly higher than that the group which had irradiation without NAC pretreatment. Compared to the combination group, the irradiation-only group revealed statistically significant SR decrease with the maximal difference at 12 hours. However, at 48 hours the SR of the combination group was significantly lower than the irradiation-only group. $\underline{Conclusion}$: PrxI is suggested to be an antioxidant enzyme because the amount of PrxI was increased by irradiation but decreased pretreatment NAC, a known antioxidants. Furthermore, cisplatin may inhibit PrxI production which may lead to increase cytotoxicity of irradiation. The expression of PrxI may play an important role in cytotoxicity mechanism caused by irradiation and cisplatin.

Protective effect of ethyl acetate fraction from Actinidia arguta sprout against high glucose-induced in vitro neurotoxicity (포도당으로 유도된 in vitro 뇌신경세포 독성에 대한 다래 순 아세트산에틸 분획물의 보호 효과)

  • Yoo, Seul Ki;Park, Seon Kyeong;Kim, Jong Min;Kang, Jin Yong;Park, Su Bin;Han, Hye Ju;Kim, Chul-Wo;Lee, Uk;Heo, Ho Jin
    • Korean Journal of Food Science and Technology
    • /
    • v.50 no.5
    • /
    • pp.517-527
    • /
    • 2018
  • The current study investigated in vitro anti-diabetic and neuroprotective effects of the ethyl acetate fraction in Actinidia arguta sprouts (EFAS), on $H_2O_2$ and high glucose-induced cytotoxicity in human neuroblastoma MC-IXC cells. EFAS had high total phenolic and total flavonoid contents. An assessment of 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) radical scavenging activity of EFAS, as well as its potential for inhibiting malondialdehyde production, indicated that EFAS may possess significant antioxidant properties. EFAS exerted inhibitory effects on ${\alpha}-glucosidase$ via glycemic regulation which forms advanced glycation end products. In addition, EFAS exhibited significant acetylcholinesterase inhibitory effects. Moreover, EFAS displayed protective effects against $H_2O_2$ and high glucose-induced cell death, and inhibited the generation of reactive oxygen species in MC-IXC cells. Finally, the main physiological compound of EFAS was identified via high performance liquid chromatography as a rutin.

Antioxidant Activity and Inhibitory Effect against Oxidative Neuronal Cell Death of Kimchi Containing a Mixture of Wild Vegetables with Nitrite Scavenging Activity (아질산염 소거 작용을 가진 산채 혼합물을 함유한 김치의 항산화 활성 및 산화적 신경세포 사멸 억제 효과)

  • Kang, Kyung Hun;Park, Si Young;Kwon, Ki Han;Lim, Heekyung;Kim, Sung Hyun;Kim, Jeong Gyun;Chung, Mi Ja
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.44 no.10
    • /
    • pp.1458-1469
    • /
    • 2015
  • This study was carried out to investigate the nitrite scavenging activities (NSA) of nine kinds of wild vegetables in a $NaNO_2$ model system and nitrite of Chinese cabbage as well as the inhibitory effect of kimchi containing a mixture of wild vegetables (MWV) with nitrite scavenging activity on brain neuronal cell death. NSA was higher at pH 1.2 than pH 4.2 in all samples. NSA of extracts from sprouts of Oenothera laciniata and Aster scaber (AS) was above 90% at pH 1.2. AS, Codonopsis lanceolate (CL), Adenophora triphylla (AT), Platycodon grandiflorum (PG), and Taraxacum officinale (TO) extracts showed significantly higher levels of NSA than those from other extracts at pH 4.2. CL, AT, PG, and TO extracts showed high NSA on nitrite of Chinese cabbage. In addition, the effects of MWV on antioxidant and brain neuronal cell death induced by oxidative stress were investigated in human brain neuroblastoma SK-N-SH cells. MWV extract attenuated $H_2O_2$-induced cell death and reactive oxygen species (ROS) generation in SK-N-SH cells. MWV extract showed significantly higher DPPH radical scavenger activity when compared to normal kimchi extract. MWV extract showed an inhibitory effect on brain neuronal cell death against oxidative stress by antioxidant activities.

Protective effect of Gabjubaekmok (Diospyros kaki) extract against amyloid beta (Aβ)-induced cognitive impairment in a mouse model (아밀로이드 베타(amyloid beta)로 유도된 인지장애 마우스 모델에서 갑주백목(Diospyros kaki) 추출물의 인지기능 및 뇌 신경세포 보호 효과)

  • Yoo, Seul Ki;Kim, Jong Min;Park, Seon Kyeong;Kang, Jin Yong;Han, Hye Ju;Park, Hyo Won;Kim, Chul-Woo;Lee, Uk;Heo, Ho Jin
    • Korean Journal of Food Science and Technology
    • /
    • v.51 no.4
    • /
    • pp.379-392
    • /
    • 2019
  • The current study investigated the effect of Gabjubaekmok (Diospyros kaki) ethanolic extract (GEE) on $H_2O_2$-induced human neuroblastoma MC-IXC cells and amyloid beta $(A{\beta})_{1-42}$-induced ICR (Institute of Cancer Research) mice. GEE showed significant antioxidant activity that was evaluated based on ABTS, DPPH scavenging activity, and inhibition of malondialdehyde (MDA) and acetylcholinesterase activity. Further, GEE inhibited ROS production and increased cell viability in $H_2O_2$-induced MC-IXC cells. Administration of GEE ameliorated the cognitive dysfunction on $A{\beta}$-induced ICR mice as evaluated using Y-maze, passive avoidance, and Morris water maze tests. Results of ex vivo test using brain tissues showed that, GEE protected the cholinergic system and mitochondrial functions by increasing the levels of antioxidants such as ROS, mitochondrial membrane potential (MMP), and adenosine triphosphate (ATP) against $A{\beta}$-induced cognitive dysfunction. Moreover, GEE decreasd the expression levels of apoptosis-related proteins such as $TNF-{\alpha}$, p-JNK, p-tau, BAX and caspase 3. While, expression levels of p-Akt and $p-GSK3{\beta}$ increased than $A{\beta}$ group. Finally, gallic acid was identified as the main compound of GEE using high performance liquid chromatography.