• 제목/요약/키워드: Human migration

검색결과 675건 처리시간 0.028초

시험관내에서 아니사키스 유충의 운동성에 대한 고련피, 관중, 사군자의 억제효과 (Inhibitory effects of herbal extracts (Meliae ezadarach, Dryopteris crassirhizoma, Quisqualis indica var villosa) on larval migration of Anisakis spp. in vitro)

  • 권희녕;지차호
    • 대한수의학회지
    • /
    • 제48권4호
    • /
    • pp.473-480
    • /
    • 2008
  • A high incidence of Anisakiasis has been reported in many countries where people eat frequently raw or undercooked seafood. Anisakis spp. larvae were obtained from the mackerel acquired from a fish market of Cheongju city. They were divided into several groups and placed in culture dishes containing RPMI-1640 (culture media), in the presence or absence of different concentrations of herbal extracts (Meliae ezadarach, Dryopteris crassirhizoma, Quisqualis indica var villosa). The objective of the present study was to investigate the activity of larval migration inhibition in vitro. Meliae ezadarach at the concentrations of 7.5, 15, and 30 mg/ml effectively inhibited the larvae migration in time-dependent manner during experimental period of 0-24 h. Treatment of Meliae ezadarach at the three concentrations completely inhibited the larvae migration in vitro. Dryopteris crassirhizoma at the concentrations of 5, 10, and 20 mg/ml also effectively inhibited the larvae migration in a time-dependent manner. The treatment of Dryopteris crassirhizoma for 12 h completely inhibited the larvae migration. The inhibitory effect of Dryopteris crassirhizoma was stronger than that of Meliae ezadarach. Although Quisqualis indica var villosa also showed the inhibitory effect on larvae migration, its inhibitory efficacy was the weakest among tested herbal extracts. These results indicated that some herbal extracts may be useful in controlling human anisakiasis.

New Insights into 4-Amino-2-tri-fluoromethyl-phenyl Ester Inhibition of Cell Growth and Migration in the A549 Lung Adenocarcinoma Cell Line

  • Wang, Hao;Gui, Shu-Yu;Chen, Fei-Hu;Zhou, Qing;Wang, Yuan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권12호
    • /
    • pp.7265-7270
    • /
    • 2013
  • Objective: The present study was designed to investigate the probable mechanisms of synthetic retinoid 4-amino-2-tri-fluoromethyl-phenyl ester (ATPR) inhibition of the proliferation and migration of A549 human lung carcinoma cells. Materials and Methods: After the A549 cells were treated with different concentrations of ATPR or all-trans retinoic acid (ATRA) for 72 h, scratch-wound assays were performed to assess migration. Immunofluorescence was used to determine the distribution of CAV1 and $RXR{\alpha}$, while expression of CAV1, MLCK, MLC, P38, and phosphorylation of MLC and P38 were detected by Western blotting. Results: ATPR could block the migration of A549 cells. The relative migration rate of ML-7 group had significantly decreased compared with control group. In addition, ATPR decreased the expression of a migration related proteins, MLCK, and phosphorylation of MLC and P38. ATPR could also influence the expression of RARs or RXRs. At the same time, CAV1 accumulated at cell membranes, and $RXR{\alpha}$ relocated to the nucleus after ATPR treatment. Conclusions: Caveolae may be implicate in the transport of ATPR to the nucleus. Change in the expression and distribution of $RXR{\alpha}$ may be implicated in ATPR inhibition of A549 cell proliferation. The mechanisms of ATPR reduction in A549 cell migration may be associated with expression of MLCK and phosphorylation of MLC and P38.

Ganoderma Lucidum Polysaccharides Target a Fas/Caspase Dependent Pathway to Induce Apoptosis in Human Colon Cancer Cells

  • Liang, Zengenni;Guo, Yu-Tong;Yi, You-Jin;Wang, Ren-Cai;Hu, Qiu-Long;Xiong, Xing-Yao
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권9호
    • /
    • pp.3981-3986
    • /
    • 2014
  • Ganoderma lucidum polysaccharides (GLP) extracted from Ganoderma lucidum have been shown to induce cell death in some kinds of cancer cells. This study investigated the cytotoxic and apoptotic effect of GLP on HCT-116 human colon cancer cells and the molecular mechanisms involved. Cell proliferation, cell migration, lactate dehydrogenase (LDH) levels and intracellular free calcium levels ($[Ca^{2+}]i$) were determined by MTT, wound-healing, LDH release and fluorescence assays, respectively. Cell apoptosis was observed by scanning and transmission electron microscopy. For the mechanism studies, caspase-8 activation, and Fas and caspase-3 expression were evaluated. Treatment of HCT-116 cells with various concentrations of GLP (0.625-5 mg/mL) resulted in a significant decrease in cell viability (P< 0.01). This study showed that the antitumor activity of GLP was related to cell migration inhibition, cell morphology changes, intracellular $Ca^{2+}$ elevation and LDH release. Also, increase in the levels of caspase-8 activity was involved in GLP-induced apoptosis. Western blotting indicated that Fas and caspase-3 protein expression was up-regulated after exposure to GLP. This investigation demonstrated for the first time that GLP shows prominent anticancer activities against the HCT-116 human colon cancer cell line through triggering intracellular calcium release and the death receptor pathway.

Roles of microRNA-206 in Osteosarcoma Pathogenesis and Progression

  • Bao, Yun-Ping;Yi, Yang;Peng, Li-Lin;Fang, Jing;Liu, Ke-Bin;Li, Wu-Zhou;Luo, Hua-Song
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권6호
    • /
    • pp.3751-3755
    • /
    • 2013
  • Backgroud and Aims: MicroRNA-206 has proven to be down-regulated in many human malignancies in correlation with tumour progression. Our study aimed to characterize miR-206 contributions to initiation and malignant progression of human osteosarcoma. Methods: MiR-206 expression was detected in human osteosarcoma cell 1ine MG63, human normal osteoblastic cell line hFOB 1.19, and paired osteosarcoma and normal adjacent tissues from 65 patients using quantitative RT-PCR. Relationships of miR-206 levels to clinicopathological characteristics were also investigated. Moreover, miR-206 mimics and negative control siRNA were transfected into MG63 cells to observe effects on cell viability, apoptosis, invasion and migration. Results: We found that miR-206 was down-regulated in the osteosarcoma cell line MG63 and primary tumor samples, and decreased miR-206 expression was significantly associated with advanced clinical stage, T classification, metastasis and poor histological differentiation. Additionally, transfection of miR-206 mimics could reduce MG-63 cell viability, promote cell apoptosis, and inhibit cell invasion and migration. Conclusions: These findings indicate that miR-206 may have a key role in osteosarcoma pathogenesis and development. It could serve as a useful biomarker for prediction of osteosarcoma progression, and provide a potential target for gene therapy.

Monitoring the Differentiation and Migration Patterns of Neural Cells Derived from Human Embryonic Stem Cells Using a Microfluidic Culture System

  • Lee, Nayeon;Park, Jae Woo;Kim, Hyung Joon;Yeon, Ju Hun;Kwon, Jihye;Ko, Jung Jae;Oh, Seung-Hun;Kim, Hyun Sook;Kim, Aeri;Han, Baek Soo;Lee, Sang Chul;Jeon, Noo Li;Song, Jihwan
    • Molecules and Cells
    • /
    • 제37권6호
    • /
    • pp.497-502
    • /
    • 2014
  • Microfluidics can provide unique experimental tools to visualize the development of neural structures within a microscale device, which is followed by guidance of neurite growth in the axonal isolation compartment. We utilized microfluidics technology to monitor the differentiation and migration of neural cells derived from human embryonic stem cells (hESCs). We co-cultured hESCs with PA6 stromal cells, and isolated neural rosette-like structures, which subsequently formed neurospheres in suspension culture. Tuj1-positive neural cells, but not nestin-positive neural precursor cells (NPCs), were able to enter the microfluidics grooves (microchannels), suggesting that neural cell-migratory capacity was dependent upon neuronal differentiation stage. We also showed that bundles of axons formed and extended into the microchannels. Taken together, these results demonstrated that microfluidics technology can provide useful tools to study neurite outgrowth and axon guidance of neural cells, which are derived from human embryonic stem cells.

KLK6 Promotes Growth, Migration, and Invasion of Gastric Cancer Cells

  • Zhu, Shengxing;Shi, Jihua;Zhang, Shanfeng;Li, Zhen
    • Journal of Gastric Cancer
    • /
    • 제18권4호
    • /
    • pp.356-367
    • /
    • 2018
  • Purpose: Kallikrein (KLK) proteases are hormone-like signaling molecules with critical functions in different cancers. This study investigated the expression of KLK6 in gastric cancer and its potential role in the growth, migration, and invasion of gastric cancer cells. Materials and Methods: In this study, we compared protein levels of KLK6, vascular endothelial growth factor (VEGF), and matrix metallopeptidase (MMP) 9 in normal gastric epithelial and gastric cancer cell lines by western blot. Fluorescence-activated cell sorting was employed to sort 2 clones of SGC-7901 cells with distinct KLK6 expression, namely, KLK6-high ($KLK6^{high}$) and KLK6-low ($KLK6^{low}$), which were then expanded. Lastly, immunohistochemical analysis was performed to investigate KLK6 expression in gastric cancer patients. Results: The expression levels of KLK6, VEGF, and MMP 9, were significantly higher in the gastric cancer cell lines SGC-7901, BGC-823, MKN-28, and MGC-803 than in the normal gastric epithelial cell line GES-1. Compared to $KLK6^{low}$ cells, $KLK6^{high}$ cells showed enhanced viability, colony-forming ability, migration, and invasion potential in vitro. Importantly, immunohistochemical analysis of a human gastric cancer tissue cohort revealed that the staining for KLK6, VEGF, and MMP9 was markedly stronger in the cancerous tissues than in the adjacent normal tissues. KLK6 expression also correlated with that of VEGF and MMP9 expression, as well as several key clinicopathological parameters. Conclusions: Together, these results suggest an important role for KLK6 in human gastric cancer progression.

Development of Hair Keratin Protein to Accelerate Oral Mucosal Regeneration

  • So-Yeon Kim
    • 치위생과학회지
    • /
    • 제23권4호
    • /
    • pp.369-377
    • /
    • 2023
  • Background: In this study, we investigated the potential use of keratin for oral tissue regeneration. Keratin is well-known for its effectiveness in skin regeneration by promoting keratinization and enhancing the elasticity and activity of fibroblasts. Because of its structural stability, high storability, biocompatibility, and safety in humans, existing research has predominantly focused on its role in skin wound healing. Herein, we propose using keratin proteins as biocompatible materials for dental applications. Methods: To assess the suitability of alpha-keratin protein as a substrate for cell culture, keratin was extracted from human hair via PEGylation. Viabilities of primary human gingival fibroblasts (HGFs) and human oral keratinocytes (HOKs) were assessed. Fluorescence immunostaining and migration assays were conducted using a fluorescence microscope and confocal laser scanning microscope. Wound healing and migration assays were performed using automated software to analyze the experimental readout and gap closure rate. Results: We confirmed the extraction of alpha-keratin and formation of the PEG-g-keratin complex. Treatment of HGFs with keratin protein at a concentration of 5 mg/ml promoted proliferation and maintained cell viability in the test group compared to the control group. HOKs treated with 5 mg/ml keratin exhibited a slight decrease in cell proliferation and activity after 48 hours compared to the untreated group, followed by an increase after 72 hours. Wound healing and migration assays revealed rapid closure of the area covered by HOKs over time following keratin treatment. Additionally, HOKs exhibited changes in cell morphology and increased the expression of the mesenchymal marker vimentin. Conclusion: Our study demonstrated the potential of hair keratin for soft tissue regeneration, with potential future applications in clinical settings for wound healing.

STK899704 inhibits stemness of cancer stem cells and migration via the FAK-MEK-ERK pathway in HT29 cells

  • Jang, Hui-Ju;Bak, Yesol;Pham, Thu-Huyen;Kwon, Sae-Bom;Kim, Bo-Yeon;Hong, JinTae;Yoon, Do-Young
    • BMB Reports
    • /
    • 제51권11호
    • /
    • pp.596-601
    • /
    • 2018
  • Colon cancer is one of the most lethal and common malignancies worldwide. STK899704, a novel synthetic agent, has been reported to exhibit anticancer effects towards numerous cancer cells. However, the effect of STK899704 on the biological properties of colon cancer, including cancer cell migration and cancer stem cells (CSCs), remains unknown. Here, we examined the inhibitory effect of STK899704 on cell migration and CSC stemness. In the wound healing assay, STK899704 significantly inhibited the motility of colon cancer cells. Furthermore, STK899704 downregulated the mRNA expression levels of the cell migration mediator focal adhesion kinase (FAK). STK899704 also suppressed mitogen-activated protein kinase kinase and extracellular signal-regulated kinase, which are downstream signaling molecules of FAK. Additionally, STK899704 inhibited stemness gene expression and sphere formation in colon cancer stem cells. These results suggest that STK899704 can be used to treat human colon cancer.

ZNF217 is Overexpressed and Enhances Cell Migration and Invasion in Colorectal Carcinoma

  • Zhang, Zi-Chao;Zheng, Li-Qiang;Pan, Li-Jie;Guo, Jin-Xing;Yang, Guo-Shan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권6호
    • /
    • pp.2459-2463
    • /
    • 2015
  • Background: To investigate the expression and clinical significance of zinc finger protein 217 (ZNF217) in human colorectal carcinoma (CRC). Materials and Methods: The expression of ZNF217 in 60 CRC tissues and matched tumor adjacent tissues, collected between January 2013 and June 2014, was assessed immunohistochemically. The relationship between the expression of ZNF217 and clinicopathlogical features was analyzed by Pearson chi-square test. In addition, siRNA was used to down-regulate the expression of ZNF217 in CRC cells. The effects of ZNF217 for cell migration and invasion were measured by wound healing assay and transwell assay, respectively. Results: The expression level of ZNF217 was significantly higher in CRC tissues than in tumor adjacent tissues (p<0.05), positively correlating with tumor size, lymphatic metastasis and advanced TNM stage (p<0.05). Down-regulation of ZNF217 in CRC cells could significantly suppress cell migration and invasion. Conclusions: ZNF217 is overexpressed in colorectal carcinoma tissues and is associated with tumor malignant clinicopathological features. ZNF217 may promote CRC progression by inducing cell migration and invasion.

인간대동맥평활근의 유주능 및 기질금속단백분해효소의 억제를 통한 계지의 항동맥경화능 (Anti-sclerotic Effect of Cinnamomi Ramulus Via Suppression of MMP-9 Activity and Migration of TNF-$\alpha$-induced HASMC)

  • 김재은;이창섭;최성규;최달영
    • 동의생리병리학회지
    • /
    • 제23권5호
    • /
    • pp.974-979
    • /
    • 2009
  • Proliferation of vascular smooth muscle cell(VSMC) is one of the key features in onset of atherosclerosis and restenosis after vascular surgery such as stent implant. Atherosclerotic plaques are usually composed of collagen, elatsin and smooth muscle cells. Release of matrix metalloproteinases(MMPs) is considered to have correlation with development of atherosclerotic plaques. Based on the hypothesis that MMP inhibition would be helpful in the treatment of atherosclerosis, we investigated inhibition of MMP activity and migration of TNF-$\alpha$-induced human aortic smooth muscle cell(HASMC) by Cinnamomi Ramulus(CC). The result from gelatin zymography showed that CC inhibited MMP-9 activity in a dose-dependent manner. In addition, CC considerably inhibited the migration of HASMC induced by TNF-$\alpha$, while it showed little cytotoxic effect on HASMC. These results suggest that CC can be a potential anti-atherosclerotic agent through inhibition of MMP-9 activity and SMC migration.