• Title/Summary/Keyword: Human liver

Search Result 1,334, Processing Time 0.031 seconds

Effect of Thiol-reducing Agents and Antioxidants on Sulfasalazine-induced Hepatic Injury in Normotermic Recirculating Isolated Perfused Rat Liver

  • Heidari, Reza;Esmailie, Neda;Azarpira, Negar;Najibi, Asma;Niknahad, Hossein
    • Toxicological Research
    • /
    • v.32 no.2
    • /
    • pp.133-140
    • /
    • 2016
  • Sulfasalzine is a widely administered drug against inflammatory-based disorders in human. However several cases of liver injury are associated with its administration. There is no stabilized safe protective agent against sulfasalazine-induced liver injury. Current investigation was designed to evaluate if N-acetylcysteine (NAC) and dithioteritol (DTT) as thiol reducing agents and/or vitamins C and E as antioxidants have any protective effects against sulfasalazine-induced hepatic injury in an ex vivo model of isolated rat liver. Rat liver was canulated and perfused via portal vein in a closed recirculating system. Different concentrations of sulfasalazine and/or thiol reductants and antioxidants were administered and markers of organ injury were monitored at different time intervals. It was found that 5 mM of sulfasalazine caused marked liver injury as judged by rise in liver perfusate level of alanine aminotransferase (ALT), aspartate aminotransferase (AST), and lactate dehydrogenase (LDH) (p < 0.05). A significant amount of lipid peroxidation and hepatic glutathione depletion were detected in drug-treated livers, accompanied with significant histopathological changes of the organ. Administration of NAC ($500{\mu}M$), DTT (${400\mu}M$), Vitamin C ($200{\mu}M$), or vitamin E ($200{\mu}M$) significantly alleviated sulfasalazine-induced hepatic injury in isolated perfused rat liver. The data obtained from current investigation indicate potential therapeutic properties of thiol reductants and antioxidants against sulfasalazine-induced liver injury.

Implementation of the Classification using Neural Network in Diagnosis of Liver Cirrhosis (간 경변 진단시 신경망을 이용한 분류기 구현)

  • Park, Byung-Rae
    • Journal of Intelligence and Information Systems
    • /
    • v.11 no.1
    • /
    • pp.17-33
    • /
    • 2005
  • This paper presents the proposed a classifier of liver cirrhotic step using MR(magnetic resonance) imaging and hierarchical neural network. The data sets for classification of each stage, which were normal, 1type, 2type and 3type, were analysis in the number of data was 231. We extracted liver region and nodule region from T1-weight MR liver image. Then objective interpretation classifier of liver cirrhotic steps. Liver cirrhosis classifier implemented using hierarchical neural network which gray-level analysis and texture feature descriptors to distinguish normal liver and 3 types of liver cirrhosis. Then proposed Neural network classifier learned through error back-propagation algorithm. A classifying result shows that recognition rate of normal is $100\%$, 1type is $82.8\%$, 2type is $87.1\%$, 3type is $84.2\%$. The recognition ratio very high, when compared between the result of obtained quantified data to that of doctors decision data and neural network classifier value. If enough data is offered and other parameter is considered this paper according to we expected that neural network as well as human experts and could be useful as clinical decision support tool for liver cirrhosis patients.

  • PDF

Arginase-1 and P-glycoprotein are downregulated in canine hepatocellular carcinoma

  • Kim, Soo-Hyeon;Seung, Byung-Joon;Cho, Seung-Hee;Lim, Ha-Young;Bae, Min-Kyung;Sur, Jung-Hyang
    • Journal of Veterinary Science
    • /
    • v.22 no.5
    • /
    • pp.61.1-61.13
    • /
    • 2021
  • Background: Hepatocellular carcinoma is the most common primary hepatic malignancy in humans and dogs. Several differentially expressed molecules have been studied and reported in human hepatocellular carcinoma and non-neoplastic liver lesions. However, studies on the features of canine hepatocellular carcinoma are limited, especially related to the differential characteristics of neoplastic and non-neoplastic lesions. Objectives: The study's objective was 1) to examine and evaluate the expression of arginase-1, P-glycoprotein, and cytokeratin 19 in canine liver tissues and 2) to investigate the differential features of hepatocellular carcinomas, liver tissue with non-neoplastic lesions, and paracancerous liver tissues in dogs. Methods: The expression levels of three markers underwent immunohistochemical analysis in 40 non-neoplastic liver tissues, 32 hepatocellular carcinoma tissues, and 11 paracancerous liver tissues. Scoring of each marker was performed semi-quantitatively. Results: Arginase-1 and P-glycoprotein were significantly downregulated in hepatocellular carcinoma, compared with hepatic tissues with non-neoplastic diseases (p < 0.001). Expression levels of arginase-1 and P-glycoprotein were also significantly lower in hepatocellular carcinoma than in paracancerous liver tissues (arginase-1, p = 0.0195; P-glycoprotein, p = 0.047). Few cytokeratin 19-positive hepatocytes were detected and only in one hepatocellular carcinoma and one cirrhotic liver sample. Conclusions: The results of this study suggest that downregulation of arginase-1 and P-glycoprotein is a feature of canine hepatocellular carcinoma; thus, those markers are potential candidates for use in differentiating hepatocellular carcinomas from non-neoplastic liver lesions in dogs.

Ahnak depletion accelerates liver regeneration by modulating the TGF-β/Smad signaling pathway

  • Yang, Insook;Son, Yeri;Shin, Jae Hoon;Kim, Il Yong;Seong, Je Kyung
    • BMB Reports
    • /
    • v.55 no.8
    • /
    • pp.401-406
    • /
    • 2022
  • Ahnak, a large protein first identified as an inhibitor of TGF-β signaling in human neuroblastoma, was recently shown to promote TGF-β in some cancers. The TGF-β signaling pathway regulates cell growth, various biological functions, and cancer growth and metastasis. In this study, we used Ahnak knockout (KO) mice that underwent a 70% partial hepatectomy (PH) to investigate the function of Ahnak in TGF-β signaling during liver regeneration. At the indicated time points after PH, we analyzed the mRNA and protein expression of the TGF -β/Smad signaling pathway and cell cycle-related factors, evaluated the cell cycle through proliferating cell nuclear antigen (PCNA) immunostaining, analyzed the mitotic index by hematoxylin and eosin staining. We also measured the ratio of liver tissue weight to body weight. Activation of TGF-β signaling was confirmed by analyzing the levels of phospho-Smad 2 and 3 in the liver at the indicated time points after PH and was lower in Ahnak KO mice than in WT mice. The expression levels of cyclin B1, D1, and E1; proteins in the Rb/E2F transcriptional pathway, which regulates the cell cycle; and the numbers of PCNA-positive cells were increased in Ahnak KO mice and showed tendencies opposite that of TGF-β expression. During postoperative regeneration, the liver weight to body weight ratio tended to increase faster in Ahnak KO mice. However, 7 days after PH, both groups of mice showed similar rates of regeneration, following which their active regeneration stopped. Analysis of hepatocytes undergoing mitosis showed that there were more mitotic cells in Ahnak KO mice, consistent with the weight ratio. Our findings suggest that Ahnak enhances TGF-β signaling during postoperative liver regeneration, resulting in cell cycle disruption; this highlights a novel role of Ahnak in liver regeneration. These results provide new insight into liver regeneration and potential treatment targets for liver diseases that require surgical treatment.

Immunological Monitoring of Urinary Aflatoxins and Estimation of Liver Cancer Incidence in Koreans

  • Choi, Mun-Jung;You, Young-Chan;Kim, Hyung-Sik;Lee, Byung-Mu
    • BMB Reports
    • /
    • v.29 no.2
    • /
    • pp.105-110
    • /
    • 1996
  • Polyclonal antiserum R101 against aflatoxin $B_1$ ($AFB_1$) was raised in New Zealand white rabbits after injection of bovine serum albumin-$AFB_1$ conjugate. Competitive ELISA (enzyme linked immuno-sorbent assay) demonstrated that antiserum R101 has the highest binding for $AFB_1$ (50% inhibition at 170 fmol) and aflatoxicol II (50% inhibition at 112 fmol). It also reacts with other aflatoxins such as $AFB_2$, $AFG_1$, $AFG_2$, and aflatoxin metabolites ($AFM_1$, $AFM_2$, $AFP_1$, and $AFQ_1$), but it does not cross-react with $AFG_2a$. Using this antiserum, aflatoxins were quantitated in 100 urine samples of undergraduate students at the College of Pharmacy, Sung Kyun Kwan University, Republic of Korea. By ELISA, $AFB_1$ and its metabolites were detected in human urine samples (N=100, male=89, female=11, ages=20~31 yrs) with a range of 1.4~200.6 ng/kg/day (mean$\pm$SD=$18.11{\pm}33.01\;ng\;AFB_1/kg/day$ in males, $3.82{\pm}2.65\;ng/kg/day$ in females). Assuming that urinary excretion is about 7.6% of $AFB_1$ intake (Groopman et al., 1992), we estimated that Koreans were daily exposed to a total dietary $AFB_1$ of $240.20{\pm}438.67\;ng/kg/day$ in males and $50.35{\pm}29.88\;ng/kg/day$ in females, respectively. When the human monitoring data was applied to a linear regression model of Y=21.67X-10.04 {Y=liver cancer incidence per 100,000, X=Log $AFB_1$ intake (ng/kg/day), r=0.99} developed from previously reported epidemiological data, calculated liver cancer incidences attributed to $AFB_1$ exposure were 41.56/100,000 in males and 26.84/100,000 in females. The incidences were similarly correlated with liver cancer mortality rates of 43.43/100,000 in males and 11.23/100,000 in females in Korea. These results suggest that aflatoxin exposure may be an important risk factor for the high incidence of liver cancer in Korea.

  • PDF

Prediction of Pharmacokinetics and Penetration of Moxifloxacin in Human with Intra-Abdominal Infection Based on Extrapolated PBPK Model

  • Zhu, LiQin;Yang, JianWei;Zhang, Yuan;Wang, YongMing;Zhang, JianLei;Zhao, YuanYuan;Dong, WeiLin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.19 no.2
    • /
    • pp.99-104
    • /
    • 2015
  • The aim of this study is to develop a physiologically based pharmacokinetic (PBPK) model in intra-abdominal infected rats, and extrapolate it to human to predict moxifloxacin pharmacokinetics profiles in various tissues in intra-abdominal infected human. 12 male rats with intra- abdominal infections, induced by Escherichia coli, received a single dose of 40 mg/kg body weight of moxifloxacin. Blood plasma was collected at 5, 10, 20, 30, 60, 120, 240, 480, 1440 min after drug injection. A PBPK model was developed in rats and extrapolated to human using GastroPlus software. The predictions were assessed by comparing predictions and observations. In the plasma concentration versus time profile of moxifloxcinin rats, $C_{max}$ was $11.151{\mu}g/mL$ at 5 min after the intravenous injection and $t_{1/2}$ was 2.936 h. Plasma concentration and kinetics in human were predicted and compared with observed datas. Moxifloxacin penetrated and accumulated with high concentrations in redmarrow, lung, skin, heart, liver, kidney, spleen, muscle tissues in human with intra-abdominal infection. The predicted tissue to plasma concentration ratios in abdominal viscera were between 1.1 and 2.2. When rat plasma concentrations were known, extrapolation of a PBPK model was a method to predict drug pharmacokinetics and penetration in human. Moxifloxacin has a good penetration into liver, kidney, spleen, as well as other tissues in intra-abdominal infected human. Close monitoring are necessary when using moxifloxacin due to its high concentration distribution. This pathological model extrapolation may provide reference to the PK/PD study of antibacterial agents.

Upregulation of Carbonyl Reductase 1 by Nrf2 as a Potential Therapeutic Intervention for Ischemia/Reperfusion Injury during Liver Transplantation

  • Kwon, Jae Hyun;Lee, Jooyoung;Kim, Jiye;Kirchner, Varvara A.;Jo, Yong Hwa;Miura, Takeshi;Kim, Nayoung;Song, Gi-Won;Hwang, Shin;Lee, Sung-Gyu;Yoon, Young-In;Tak, Eunyoung
    • Molecules and Cells
    • /
    • v.42 no.9
    • /
    • pp.672-685
    • /
    • 2019
  • Currently, liver transplantation is the only available remedy for patients with end-stage liver disease. Conservation of transplanted liver graft is the most important issue as it directly related to patient survival. Carbonyl reductase 1 (CBR1) protects cells against oxidative stress and cell death by inactivating cellular membrane-derived lipid aldehydes. Ischemia-reperfusion (I/R) injury during living-donor liver transplantation is known to form reactive oxygen species. Thus, the objective of this study was to investigate whether CBR1 transcription might be increased during liver I/R injury and whether such increase might protect liver against I/R injury. Our results revealed that transcription factor Nrf2 could induce CBR1 transcription in liver of mice during I/R. Pre-treatment with sulforaphane, an activator of Nrf2, increased CBR1 expression, decreased liver enzymes such as aspartate aminotransferase and alanine transaminase, and reduced I/R-related pathological changes. Using oxygen-glucose deprivation and recovery model of human normal liver cell line, it was found that oxidative stress markers and lipid peroxidation products were significantly lowered in cells overexpressing CBR1. Conversely, CBR1 knockdown cells expressed elevated levels of oxidative stress proteins compared to the parental cell line. We also observed that Nrf2 and CBR1 were overexpressed during liver transplantation in clinical samples. These results suggest that CBR1 expression during liver I/R injury is regulated by transcription factor Nrf2. In addition, CBR1 can reduce free radicals and prevent lipid peroxidation. Taken together, CBR1 induction might be a therapeutic strategy for relieving liver I/R injury during liver transplantation.

Interpretation of the Five Viscera's Ascending Kidney-Water and Descending Heart-Yang

  • Bang, Jung-Kyun
    • The Journal of Korean Medicine
    • /
    • v.26 no.4
    • /
    • pp.162-167
    • /
    • 2005
  • According to the principle of ascending water and descending fire, water has the property of wetting downward, which is the opposite of fire, which has the property of blazing upward. Thus, they work differently according to their innate properties. Nature and the human body maintain harmony through the interaction of ascending water and descending fire. When applied to the human body, the heart and kidney are the center of this principle. In other words, the heart above is the fire and the kidney downward is water. When the heart-fire harmonizes downward, the kidney becomes warm, enabling genuine vital functions to be active. When the kidney yin moves upward, the heart receives the nourishing yin to harmonize nutrients and blood. Thereby, physiological functions become normal throughout the blood meridians. However, in the ascending kidneywater and descending heart-yang of the heart and the kidney, the liver and lung are the major functional organs. In other words, the liver through the dispersing and raising yang functions moves water, which is the vital essence of the kidney, upward. And the lung, through the astriction?clearing of the lung and descending Qi?dispersing functions, moves the heart-fire downward. These functions are deeply related with changing seasons; thus, these functions can be explained with the ascending kidney-water and descending heart-yang of the five viscera.

  • PDF

The proton nuclear magnetic resonance spectral analysis of human blood plasma lipoprotein (혈장지 단백질에 대한 핵자기 공명 분광 분석)

  • Song, In-Chan;Kang, Sa-Ouk;Kim, Noe-Kyeong;Im, Jung-Gi;Min, Byoung-Goo
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1989 no.05
    • /
    • pp.29-34
    • /
    • 1989
  • 300 MHz proton NMR spectra of human blood plasma were analyzed by deconvolution of spectrum, and we compared its results with Fossel's test in normal (15 cases), liver cancer (14 cases) , and other cancer (14 cases) groups. This analysis had enabled us to obtain dynamic characteristics of each individual lipoprotein. As a result of deconvolution method, the VLDL and chylomicron intensity level were found to be elevated in the patients with liver cancer. Moment ratio values of $CH_2$ resonance in the raw spectrum were found to be higher than the normal group for patients with, malignant tumors other than liver cancer. These differences between the three groups could not be found in the conventional Fossel's test. We could simulate plasma spectra by addition of spectra of individual lipoproteins through deconvolution method. Further clinical trials in larger populations and additional biochemical method may shed new light on many of clinical and biochemical interests for knowing characteristics about lipoprotein not separated from blood and the background of Fossel test.

  • PDF

Studies on the Acute Toxicity and Histological Changes in Fish Exposed to Furrural (Furfural 어류급성독성 및 조직병리에 관한 연구)

  • 이철우;최성수;최필선;이상협;이길철;박광식
    • Environmental Analysis Health and Toxicology
    • /
    • v.12 no.3_4
    • /
    • pp.55-59
    • /
    • 1997
  • Furfural, an organic solvent, is widely used as synthetic component material in producing chemical products. However, furfural has been reported that it shows strong toxicities to human being showing intense stimulus to skin, eyes, mucous membrane and nerve system. It is also known to cause anemia, liver cirrhosis, kidney failure and genetic toxicity in the human being working in the exposed area. LD$_{50}$ of furfural for peritoneal injected mouse has been known around 20mg/kg, but the acute toxicity on aquatic organisms such as fish, daphnid or algae are not well known, compared to those on rodents. In this experiment, we studied on the fish toxicity of furfural using Japanese Medaka (Orvzias latipes) and Common Carp (Cvprinus carpio). We also observed histological changes in the fish organs. The LC$_{50}$ were 12. Smg/L in Japanese Medaka and 21.8 mg/L in Common Carp, respectively. When Common Carps were exposed to 120mg/L of furfural concentration for 30 minutes, blood congestion in gills and lysis of secondary lamella were shown. Though the muscle of caudal fin was not completely eroded, its epidermic cells were shown to be necrotic in various parts. Tissue atrophy and cell necrosis were also shown in the liver of Common Carps exposed to furfural. From these results, furfural seems to cause histological damages on liver, an internal organ as well as on external organs such as gills and fins eventhough the fish were exposed for a short-term.

  • PDF