• 제목/요약/키워드: Human hepatocellular carcinoma cells

검색결과 162건 처리시간 0.024초

Ectopic Overexpression of COTE1 Promotes Cellular Invasion of Hepatocellular Carcinoma

  • Zhang, Hai;Huang, Chang-Jun;Tian, Yuan;Wang, Yu-Ping;Han, Ze-Guang;Li, Xiang-Cheng
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권11호
    • /
    • pp.5799-5804
    • /
    • 2012
  • Family with sequence similarity 189, member B (FAM189B), alias COTE1, a putative oncogene selected by microarray, for the first time was here found to be significantly up-regulated in hepatocellular carcinoma (HCC) specimens and HCC cell lines. mRNA expression of COTE1 in HCC samples and cell lines was detected by reverse transcription-polymerase chain reaction (RT-PCR) and real-time PCR, while protein expression of COTE1 in HCC tissues was assessed by immunohistochemistry. In addition, invasion of HCC cells was observed after overexpressing or silencing COTE1. In the total of 48 paired HCC specimens, compared with the adjacent non-cancer tissues, the expression of COTE1 was up-regulated in 31 (p<0.01). In HCC cell lines, COTE1 expression was significantly higher than in normal human adult liver (p<0.01). Overexpression of COTE1 enhanced HCC-derived LM6 and MHCC-L cellular invasion in vitro. In contrast, COTE1 knockdown via RNAi markedly suppressed these phenotypes, as documented in LM3 and MHCC-H HCC cells. Mechanistic analyses indicated that COTE1 could physically associate with WW domain oxidoreductase (WWOX), a tumor suppressor. COTE1 may be closely correlated with invasion of hepatocellular carcinoma (HCC) cells and thus may serve as an effective target for gene therapy.

Lentivirus-mediated Silencing of Rhomboid Domain Containing 1 Suppresses Tumor Growth and Induces Apoptosis in Hepatoma HepG2 Cells

  • Liu, Xue-Ni;Tang, Zheng-Hao;Zhang, Yi;Pan, Qing-Chun;Chen, Xiao-Hua;Yu, Yong-Sheng;Zang, Guo-Qing
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권1호
    • /
    • pp.5-9
    • /
    • 2013
  • Rhomboids were identified as the first intramembrane serine proteases about 10 years ago. Since then, the study of the rhomboid protease family has blossomed. Rhomboid domain containing 1 (RHBDD1), highly-expressed in human testis, contains a rhomboid domain with unknown function. In the present study, we tested the hypothesis that RHBDD1 was associated with proliferation and apoptosis in hepatocellular carcinoma using recombinant lentivirus-mediated silencing of RHBDD1 in HepG2 cells. Our results showed that down-regulation of RHBDD1 mRNA levels markedly suppressed proliferation and colony formation capacity of HepG2 human hepatoma cancer cells in vitro, and induced cell cycle arrest. We also found that RHBDD1 silencing could obviously trigger HepG2 cell apoptosis. In summary, it was demonstrated that RHBDD1 might be a positive regulator for proliferative and apoptotic characteristics of hepatocellular carcinoma.

Anti-growth Effects of Imatinib and GNF5 via Regulation of Skp2 in Human Hepatocellular Carcinoma Cells

  • Kim, Sung Hyun;Kim, Myoung-Ok;Kim, Ki-Rim
    • Journal of Cancer Prevention
    • /
    • 제23권4호
    • /
    • pp.170-175
    • /
    • 2018
  • Background: Human hepatocellular carcinoma (HCC) is a common liver tumor and the main cause of cancer-related death. Tyrosine kinase inhibitors, such as imatinib and GNF5 which were developed to treat chronic myelogenous leukemia, regulate the progression of various cancers. The aim of this study was to confirm the anti-tumor activity of tyrosine kinase inhibitors through regulation of S-phase kinase-associated protein 2 (Skp2), an important oncogenic factor in various cancer cells, in human hepatocarcinoma SK-HEP1 cells. Methods: Cell viability and colony formation assays were conducted to evaluate the effects of imatinib, GNF5 and GNF2 on the growth of SK-HEP1 cells. Using immunoblot analysis, we assessed change of the activation of caspases, PARP, Akt, mitogen-activated protein kinases, and Skp2/p27/p21 pathway by imatinib and GNF5 in SK-HEP1 cells. Using sh-Skp2 HCC cells, the role of Skp2 in the effects of imatinib and GNF5 was evaluated. Results: Imatinib and GNF5 significantly inhibited the growth of SK-HEP1 cells. Treatment of imatinib and GNF5 decreased Skp2 expression and Akt phosphorylation, and increased the expression of p27, p21, and active-caspases in SK-HEP1 cells. In sh-Skp2 HCC cells, cell growth and the expression of Skp2 were inhibited by more than in the mock group treated with imatinib and GNF5. Conclusions: These results suggest that the anti-growth activity of tyrosine kinase inhibitors may be associated with the regulation of p27/p21 and caspases through Skp2 blockage in HCC cells.

Evaluation of Cytotoxicity Effects of Chalcone Epoxide Analogues as a Selective COX-II Inhibitor in the Human Liver Carcinoma Cell Line

  • Makhdoumi, Pouran;Zarghi, Afshin;Daraei, Bahram;Karimi, Gholamreza
    • 대한약침학회지
    • /
    • 제20권3호
    • /
    • pp.207-212
    • /
    • 2017
  • Objectives: Study of the mechanisms involved in cancer progression suggests that cyclooxygenase enzymes play an important role in the induction of inflammation, tumor formation, and metastasis of cancer cells. Thus, cyclooxygenase enzymes could be considered for cancer chemotherapy. Among these enzymes, cyclooxygenase 2 (COX-2) is associated with liver carcinogenesis. Various COX-2 inhibitors cause growth inhibition of human hepatocellular carcinoma cells, but many of them act in the COX-2 independent mechanism. Thus, the introduction of selective COX-2 inhibitors is necessary to achieve a clear result. The present study was aimed to determine the growth-inhibitory effects of new analogues of chalcone epoxide as selective COX-2 inhibitors on the human hepatocellular carcinoma (HepG2) cell line. Methods: Estimation of both cell growth and the amount of prostaglandin E2 (PGE2) production were used to study the effect of selective COX-2 inhibitors on the hepatocellular carcinoma cell. Cell growth determination has done by MTT assay in 24 h, 48 h and 72 h, and PGE2 production has estimated by using ELYSA kit in 48 h and 72 h. Results: The results showed growth inhibition of the HepG2 cell line in a concentration and time-dependent manner, as well as a reduction in the formation of PGE2 as a product of COX-2 activity. Among the compounds those analogues with methoxy and hydrogen group showed more inhibitory effect than others. Conclusion: The current in-vitro study indicates that the observed significant growth-inhibitory effect of chalcone-epoxide analogues on the HepG2 cell line may involve COX-dependent mechanisms and the PGE2 pathway parallel to the effect of celecoxib. It can be said that these analogues might be efficient compounds in chemotherapy of COX-2 dependent carcinoma specially preventing and treatment of hepatocellular carcinomas.

지방간에 대한 백두구 에틸아세테이트 추출물의 억제 효과 및 기전 연구 (Study of the Suppressive Effect and Its Mechanism of Amomum Cardamomum L. on Free Fatty Acid-induced Liver Steatosis)

  • 임동우;김혁;박성윤;박선동;박원환;김재은
    • 동의생리병리학회지
    • /
    • 제31권3호
    • /
    • pp.159-166
    • /
    • 2017
  • Through this study, the authors investigated the anti-steatosis effects of the Amomum cardamomum ethyl acetate fraction in free fatty acids (FFAs)-induced human hepatocellular carcinoma HepG2 cells. The ethyl acetate fraction of Amomum cardamomum (ACEA) was extracted with 70% ethanol and then the extract was evaporated using a rotary evaporator prior to sequential fractionation. Human hepatocellular carcinoma were treated with different concentrations of ACEA in the presence and absence of FFAs. To demonstrate the reactive oxygen species (ROS) scavenging activity, DCFDA level was analyzed by using in vitro assay system. Cell viability, lipid accumulation, intracellular triglycerides, malondialdehyde (MDA), liver steatosis related signaling molecules and inflammatory cytokines such as interleukin (IL)-6, 8, tumor necrosis factor-alpha ($TNF-{\alpha}$) were also investigated. As results, ACEA inhibited the FFAs-induced ROS, lipid accumulation, intracellular triglycerides, and MDA in a dose dependent manner. Treatment of human hepatocellular cells with ACEA induced the phosphorylation of 5' adenosine monophosphate-activated protein kinase (AMPK) and carnitine palmitoyltransferase I (CPT1) expression using western blot analysis. ACEA also potently suppressed the FFAs-induced inflammatory cytokines including IL-6, IL-8 and $TNF-{\alpha}$. These results suggest that the ethyl acetate fraction of Amomum cardamoum extract own inhibitory effects of liver steatosis by inhibiting ROS, lipid accumulation, intracellular triglycerides, MDA through AMPK signaling and anti-inflammatory actions.

알로에 베라 추출물에 의한 사람 간암 세포주 HepG2의 Apoptosis 유도 (Induction of Apoptosis by Aloe Vera Extract in Human Hepatocellular Carcinoma HepG2 Cells)

  • 김일낭;권훈정
    • Toxicological Research
    • /
    • 제22권4호
    • /
    • pp.329-332
    • /
    • 2006
  • Ethanolic extract of Aloe vera (Aloe barbadensis Miller) was examined for the cellular toxicity on HepG2 human hepatocellular carcinoma cells. Treatment with Aloe vera extract resulted in DNA fragmentation but not LDH release, suggesting an apoptosis instead of necrosis. Aloe vera induced cytotoxicity was mediated by decrease in ATP levels, whereas GSH depletion, increase in intracellular $Ca^{2+}$, or activation of caspase-3/7 could not be observed with statistical significance. No activation of caspase-3/7 suggests the possibility of caspase-independent apoptosis. Taken together, our results show that Aloe vera extract induce HepG2 apoptosis by ATP depletion-related impairment of mitochondria, which is caspase-independent.

C-terminal truncated HBx reduces doxorubicin cytotoxicity via ABCB1 upregulation in Huh-7 hepatocellular carcinoma cells

  • Jegal, Myeong-Eun;Jung, Seung-Youn;Han, Yu-Seon;Kim, Yung-Jin
    • BMB Reports
    • /
    • 제52권5호
    • /
    • pp.330-335
    • /
    • 2019
  • Hepatitis B virus (HBV) encoding the HBV x protein (HBx) is a known causative agent of hepatocellular carcinoma (HCC). Its pathogenic activities in HCC include interference with several signaling pathways associated with cell proliferation and apoptosis. Mutant C-terminal-truncated HBx isoforms are frequently found in human HCC and have been shown to enhance proliferation and invasiveness leading to HCC malignancy. We investigated the molecular mechanism of the reduced doxorubicin cytotoxicity by C-terminal truncated HBx. Cells transfected with C-terminal truncated HBx exhibited reduced cytotoxicity to doxorubicin compared to those transfected with full-length HBx. The doxorubicin resistance of cells expressing C-terminal truncated HBx correlated with upregulation of the ATP binding cassette subfamily B member 1(ABCB1) transporter, resulting in the enhanced efflux of doxorubicin. Inhibiting the activity of ABCB1 and silencing ABCB1 expression by small interfering ribonucleic acid (siRNA) increased the cytotoxicity of doxorubicin. These results indicate that elevated ABCB1 expression induced by C-terminal truncation of HBx was responsible for doxorubicin resistance in HCC. Hence, co-treatment with an ABCB1 inhibitor and an anticancer agent may be effective for the treatment of patients with liver cancer containing the C-terminal truncated HBx.

Dryocrassin ABBA Induces Apoptosis in Human Hepatocellular Carcinoma HepG2 Cells Through a Caspase-Dependent Mitochondrial Pathway

  • Jin, Zhe;Wang, Wen-Fei;Huang, Jian-Ping;Wang, He-Meng;Ju, Han-Xun;Chang, Ying
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제17권4호
    • /
    • pp.1823-1828
    • /
    • 2016
  • Background: Biological and pharmacological activities of dryocrassin ABBA, a phloroglucinol derivative extracted from Dryopteris crassirhizoma, have attracted attention. In this study, the apoptotic effect of dryocrassin ABBA on human hepatocellular carcinoma HepG2 cells was investigated. Materials and Methods: We tested the effects of dryocrassin ABBA on HepG2 in vitro by MTT, flow cytometry, real-time PCR, and Western blotting. KM male mice were used to detect the effect of dryocrassin ABBA on H22 cells in vivo. Results: Dryocrassin ABBA inhibited the growth of HepG2 cells in a concentration-dependent manner. After treatment with 25, 50, and $75{\mu}g/mL$ dryocrassin ABBA, the cell viability was 68%, 60% and 49%, respectively. Dryocrassin ABBA was able to induce apoptosis, measured by propidium iodide (PI)/annexin V-FITC double staining. The results of real-time PCR and Western ting showed that dryocrassin ABBA up-regulated p53 and Bax expression and inhibited Bcl-2 expression which led to an activation of caspase-3 and caspase-7 in the cytosol, and then induction of cell apoptosis. In vivo experiments also showed that dryocrassin ABBA treatment significantly suppressed tumor growth, without major side effects. Conclusions: Overall, these findings provide evidence that dryocrassin ABBA may induce apoptosis in human hepatocellular carcinoma cells through a caspase-mediated mitochondrial pathway.

Involvement of adaptor protein, phosphotyrosine interacting with PH domain and leucine zipper 1 in diallyl trisulfide-induced cytotoxicity in hepatocellular carcinoma cells

  • Guan, Feng;Ding, Youming;He, Yikang;Li, Lu;Yang, Xinyu;Wang, Changhua;Hu, Mingbai
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제26권6호
    • /
    • pp.457-468
    • /
    • 2022
  • It has been demonstrated that APPL1 (adaptor protein, phosphotyrosine interacting with PH domain and leucine zipper 1) is involved in the regulation of several growth-related signaling pathways and thus closely associated with the development and progression of some cancers. Diallyl trisulfide (DAT), a garlic-derived bioactive compound, exerts selective cytotoxicity to various human cancer cells through interfering with pro-survival signaling pathways. However, whether and how DAT affects survival of human hepatocellular carcinoma (HCC) cells remain unclear. Herein, we tested the hypothesis of the involvement of APPL1 in DAT-induced cytotoxicity in HCC HepG2 cells. We found that Lys 63 (K63)-linked polyubiquitination of APPL1 was significantly decreased whereas phosphorylation of APPL1 at serine residues remained unchanged in DAT-treated HepG2 cells. Compared with wild-type APPL1, overexpression of APPL1 K63R mutant dramatically increased cell apoptosis and mitigated cell survival, along with a reduction of phosphorylation of STAT3, Akt, and Erk1/2. In addition, DAT administration markedly reduced protein levels of intracellular TNF receptor-associated factor 6 (TRAF6). Genetic inhibition of TRAF6 decreased K63-linked polyubiquitination of APPL1. Moreover, the cytotoxicity impacts of DAT on HepG2 cells were greatly attenuated by overexpression of wild-type APPL1. Taken together, these results suggest that APPL1 polyubiquitination probably mediates the inhibitory effects of DAT on survival of HepG2 cells by modulating STAT3, Akt, and Erk1/2 pathways.

Targeting SHCBP1 Inhibits Cell Proliferation in Human Hepatocellular Carcinoma Cells

  • Tao, Han-Chuan;Wang, Hai-Xiao;Dai, Min;Gu, Cheng-Yu;Wang, Qun;Han, Ze-Guang;Cai, Bing
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권10호
    • /
    • pp.5645-5650
    • /
    • 2013
  • Src homology 2 domain containing (SHC) is a proto-oncogene which mediates cell proliferation and carcinogenesis in human carcinomas. Here, the SHC SH2-domain binding protein 1 (SHCBP1) was first established to be up-regulated in human hepatocellular carcinoma (HCC) tissues by array-base comparative genome hybridization (aCGH). Meanwhile, we examine and verify it by quantitative real-time PCR and western blot. Our current data show that SHCBP1 was up-regulated in HCC tissues. Overexpression of SHCBP1 could significantly promote HCC cell proliferation, survival and colony formation in HCC cell lines. Furthermore, knockdown of SHCBP1 induced cell cycle delay and suppressed cell proliferation. Furthermore, SHCBP1 could regulate the expression of activate extracellular signal-regulated kinase 1/2 (ERK1/2) and cyclin D1. Together, our findings indicate that SHCBP1 may contribute to human hepatocellular carcinoma by promoting cell proliferation and may serve as a molecular target of cancer therapy.