• Title/Summary/Keyword: Human folate receptor

Search Result 7, Processing Time 0.023 seconds

Characterization of Soluble Type Human Folate Receptor on Folate Binding and Transport (Soluble type의 human folate receptor의 folate 결합과 수송에 관한 특성)

  • Kim, Won-Sin
    • Toxicological Research
    • /
    • v.14 no.3
    • /
    • pp.371-377
    • /
    • 1998
  • We have cloned a soluble type human folate receptor(hFR type${\gamma}$) from human thymus cDNA library using the PCR amplification technique. To examine whether hFR type${\gamma}$ has a folate transport activity, CHO cells were transfected with the pcDNAhFR${\gamma}$ expression plasmid, and the stable cell line CHO/hFR${\gamma}$ expressing a high level of the hFR type${\gamma}$ was identified by northern and western blot analysis. The CHO/hFR${\gamma}$ cells produced a [$H^3$]folic acid binding protein in the culture medium. However, we couldn't detect any cell surface [$H^3$] folic acid binding and transport activities. The growth of the CHO/hFR${\gamma}$ cells was more rapidly inhibited than the wild type CHO cells in the low concentration folic acid media. These observations indicate that although soluble type human folate receptor can bind [$H^3$]folate, it does not involve in folate transport.

  • PDF

Sorting of the Human Folate Receptor in MDCK Cells

  • Kim, Chong-Ho;Park, Young-Soon;Chung, Koong-Nah;Elwood, P.C.
    • BMB Reports
    • /
    • v.37 no.3
    • /
    • pp.362-369
    • /
    • 2004
  • The human folate receptor (hFR) is a glycosylphosphatidylinositol (GPI) linked plasma membrane protein that mediates delivery of folates into cells. We studied the sorting of the hFR using transfection of the hFR cDNA into MDCK cells. MDCK cells are polarized epithelial cells that preferentially sort GPI-linked proteins to their apical membrane. Unlike other GPI-tailed proteins, we found that in MDCK cells, hFR is functional on both the apical and basolateral surfaces. We verified that the same hFR cDNA that transfected into CHO cells produces the hFR protein that is GPI-linked. We also measured the hFR expression on the plasma membrane of type III paroxysmal nocturnal hemoglobinuria (PNH) human erythrocytes. PNH is a disease that is characterized by the inability of cells to express membrane proteins requiring a GPI anchor. Despite this defect, and different from other GPI-tailed proteins, we found similar levels of hFR in normal and type III PNH human erythrocytes. The results suggest the hypothesis that there may be multiple mechanisms for targeting hFR to the plasma membrane.

Expression of Folate Receptor Protein in CHO Cell Line

  • Kim, Chong-Ho;Park, Seung-Taeck
    • Biomedical Science Letters
    • /
    • v.14 no.4
    • /
    • pp.203-210
    • /
    • 2008
  • One of cell surface receptor proteins, human folate receptor (hFR) involves in the uptake of folates through cell membrane into cytoplasm, and is anchored to the plasma membrane by a fatty acid linkage, which has been identified in some cells as a glycosylphosphatidylinositol (GPI)-tailed protein with a molecular mass of about 40 kDa. The hFR is released by phosphatidylinositol phospholipase C (PI-PLC) because it contains fatty acids and inositol on the GPI tail. Caveolin decorates the cytoplasmic surface of caveolae and has been proposed to have a structural role in maintaining caveolae. It is unknown whether caveolin is involved in targeting, and is necessary for the function of GPI-tailed proteins. To compare the ability of folic acid binding, internalization and expression of hFR, and the effect of caveolin at the both apical and basolateral side of cell surfaces in Chinese hamster ovary (CHO) clone cells overexpressed the hFR and/or caveolin. Our present results suggest a possibility that the overexpression of caveolin does not be involved in expression of hFR, but plays a role as a factor in PI-PLC releasing kinetics, and for a regulation of formation, processing and function of hFR in CHO clone cells overexpressed cavcolin.

  • PDF

Folate Receptor-Specific Positron Emission Tomography Imaging with Folic Acid-Conjugated Tissue Inhibitor of Metalloproteinase-2

  • Kim, Sung-Min;Choi, Naeun;Hwang, Seungkyun;Yim, Min Su;Lee, Jung-Sik;Lee, Sang-Mok;Cho, Gyunggoo;Ryu, Eun Kyoung
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.11
    • /
    • pp.3243-3248
    • /
    • 2013
  • The tissue inhibitor of metalloproteinase-2 (TIMP-2) inhibits matrix metalloproteinases activity and modulates cellular proliferation and apoptosis. The human serum albumin-TIMP-2 with folic acid conjugate (termed HT2-folate) was synthesized to promote uptake through folate receptors (FRs), and a corresponding radio-labeled compound was prepared for tumor diagnosis by positron emission tomography (PET). $^{68}Ga$-NOTA-HT2-folate was synthesized from $^{68}Ga$ and the NOTA chelator with HT2-folate. The fusion protein was identified using MALDI-TOF mass spectrometry. The radioligand was prepared with a high radiochemical yield. Cell-surface association of $^{68}Ga$-NOTA-HT2-folate significantly increased over time in FR-positive tumor cells. In animal PET and biodistribution studies, tumor uptake was very high as early as 1 h after radioligand injection. Folate conjugation enhanced the selective receptor-targeting efficacy of HT2 in FRexpressing tumors, and its radioligand will be useful as an in vitro tool and for in vivo tumor diagnosis by PET imaging.

Sorting and Function of the Human Folate Receptor Is Independent of the Caveolin Expression in Fisher Rat Thyroid Epithelial Cells

  • Kim, Chong-Ho;Park, Young-Soon;Chung, Koong-Nah;Elwood, Patrick C.
    • BMB Reports
    • /
    • v.35 no.4
    • /
    • pp.395-402
    • /
    • 2002
  • Caveolae are small, flask-shaped, non-clathrin coated invaginations of the plasma membrane of many mammalian cells. Caveolae have a coat that includes caveolin. They have been implicated in numerous cellular processes, including potocytosis. Since the human folate receptor (hFR) and other glycosyl-phosphatidylinositol (GPI)-tailed proteins have been co-localized to caveolae, we studied the caveolin role in the hFR function by transfecting hFR and/or caveolin cDNA into Fischer rat thyroid epithelial (FRT) cells that normally do not express detectable levels of either protein. We isolated and characterized stable clones as follows: they express (1) high levels of caveolin alone, (2) hFR and caveolin, or (3) hFR alone. We discovered that hFR is correctly processed, sorted, and anchored by a GPI tail to the plasma membrane in FRT cells. No difference in the total folic acid binding or cell surface folic acid binding activity were found between the FRT cells that were transfected with hFR, or cells that were transfected with hFR and caveolin. The hFR that was expressed on the cell surface of clones that were transfected with hFR was also sensitive to phosphatidylinositol-specific phospholipase C (PI-PLC) release, and incorporated radiolabeled ethanolamine that supports the attachment of a GPI-tail on hFR. We conclude that the processing, sorting, and function of hFR is independent on the caveolin expression in FRT cells.

Radioimmunoassay Reagent Survey and Evaluation (검사별 radioimmunoassay시약 조사 및 비교실험)

  • Kim, Ji-Na;An, Jae-seok;Jeon, Young-woo;Yoon, Sang-hyuk;Kim, Yoon-cheol
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.25 no.1
    • /
    • pp.34-40
    • /
    • 2021
  • Purpose If a new test is introduced or reagents are changed in the laboratory of a medical institution, the characteristics of the test should be analyzed according to the procedure and the assessment of reagents should be made. However, several necessary conditions must be met to perform all required comparative evaluations, first enough samples should be prepared for each test, and secondly, various reagents applicable to the comparative evaluations must be supplied. Even if enough comparative evaluations have been done, there is a limit to the fact that the data variation for the new reagent represents the overall patient data variation, The fact puts a burden on the laboratory to the change the reagent. Due to these various difficulties, reagent changes in the laboratory are limited. In order to introduce a competitive bid, the institute conducted a full investigation of Radioimmunoassay(RIA) reagents for each test and established the range of reagents available in the laboratory through comparative evaluations. We wanted to share this process. Materials and Methods There are 20 items of tests conducted in our laboratory except for consignment tests. For each test, RIA reagents that can be used were fully investigated with the reference to external quality control report. and the manuals for each reagent were obtained. Each reagent was checked for the manual to check the test method, Incubation time, sample volume needed for the test. After that, the primary selection was made according to whether it was available in this laboratory. The primary selected reagents were supplied with 2kits based on 100tests, and the data correlation test, sensitivity measurement, recovery rate measurement, and dilution test were conducted. The secondary selection was performed according to the results of the comparative evaluation. The reagents that passed the primary and secondary selections were submitted to the competitive bidding list. In the case of reagent is designated as a singular, we submitted a explanatory statement with the data obtained during the primary and secondary selection processes. Results Excluded from the primary selection was the case where TAT was expected to be delayed at the moment, and it was impossible to apply to our equipment due to the large volume of reagents used during the test. In the primary selection, there were five items which only one reagent was available.(squamous cell carcinoma Ag(SCC Ag), β-human chorionic gonadotropin(β-HCG), vitamin B12, folate, free testosterone), two reagents were available(CA19-9, CA125, CA72-4, ferritin, thyroglobulin antibody(TG Ab), microsomal antibody(Mic Ab), thyroid stimulating hormone-receptor-antibody(TSH-R-Ab), calcitonin), three reagents were available (triiodothyronine(T3), Tree T3, Free T4, TSH, intact parathyroid hormone(intact PTH)) and four reagents were available are carcinoembryonic antigen(CEA), TG. In the secondary selection, there were eight items which only one reagent was available.(ferritin, TG, CA19-9, SCC, β-HCG, vitaminB12, folate, free testosterone), two reagents were available(TG Ab, Mic Ab, TSH-R-Ab, CA125, CA72-4, intact PTH, calcitonin), three reagents were available(T3, Tree T3, Free T4, TSH, CEA). Reasons excluded from the secondary selection were the lack of reagent supply for comparative evaluations, the problems with data reproducibility, and the inability to accept data variations. The most problematic part of comparative evaluations was sample collection. It didn't matter if the number of samples requested was large and the capacity needed for the test was small. It was difficult to collect various concentration samples in the case of a small number of tests(100 cases per month or less), and it was difficult to conduct a recovery rate test in the case of a relatively large volume of samples required for a single test(more than 100 uL). In addition, the lack of dilution solution or standard zero material for sensitivity measurement or dilution tests was one of the problems. Conclusion Comparative evaluation for changing test reagents require appropriate preparation time to collect diverse and sufficient samples. In addition, setting the total sample volume and reagent volume range required for comparative evaluations, depending on the sample volume and reagent volume required for one test, will reduce the burden of sample collection and planning for each comparative evaluation.