• 제목/요약/키워드: Human face tracking

검색결과 96건 처리시간 0.033초

Fuzzy controller를 이용한 실시간 얼굴 추적하는 방법 (A real-time face tracking method using fuzzy controller)

  • 사인규;안호석;이형규;최진영
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.333-334
    • /
    • 2008
  • A real-time face tracking is a broad topic, covering a large spectrum of technologies and applications. Briefly face tracking is a kind of tracing technique which follows human face in any directions. It needs some algorithms such as human face detection and motion controller to track face. Moreover, both processing time and calculation time are the most important factors that influence to drive tracking system. In this paper, two algorithms are used to find human face: earn-shift algorithm and face detection algorithm using OpenCV. Fuzzy controller is utilized to move pan-tilt camera system which can move four directions along to x-y axis.

  • PDF

Human Face Tracking and Modeling using Active Appearance Model with Motion Estimation

  • Tran, Hong Tai;Na, In Seop;Kim, Young Chul;Kim, Soo Hyung
    • 스마트미디어저널
    • /
    • 제6권3호
    • /
    • pp.49-56
    • /
    • 2017
  • Images and Videos that include the human face contain a lot of information. Therefore, accurately extracting human face is a very important issue in the field of computer vision. However, in real life, human faces have various shapes and textures. To adapt to these variations, A model-based approach is one of the best ways in which unknown data can be represented by the model in which it is built. However, the model-based approach has its weaknesses when the motion between two frames is big, it can be either a sudden change of pose or moving with fast speed. In this paper, we propose an enhanced human face-tracking model. This approach included human face detection and motion estimation using Cascaded Convolutional Neural Networks, and continuous human face tracking and modeling correction steps using the Active Appearance Model. A proposed system detects human face in the first input frame and initializes the models. On later frames, Cascaded CNN face detection is used to estimate the target motion such as location or pose before applying the old model and fit new target.

Robust human tracking via key face information

  • Li, Weisheng;Li, Xinyi;Zhou, Lifang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권10호
    • /
    • pp.5112-5128
    • /
    • 2016
  • Tracking human body is an important problem in computer vision field. Tracking failures caused by occlusion can lead to wrong rectification of the target position. In this paper, a robust human tracking algorithm is proposed to address the problem of occlusion, rotation and improve the tracking accuracy. It is based on Tracking-Learning-Detection framework. The key auxiliary information is used in the framework which motivated by the fact that a tracking target is usually embedded in the context that provides useful information. First, face localization method is utilized to find key face location information. Second, the relative position relationship is established between the auxiliary information and the target location. With the relevant model, the key face information will get the current target position when a target has disappeared. Thus, the target can be stably tracked even when it is partially or fully occluded. Experiments are conducted in various challenging videos. In conjunction with online update, the results demonstrate that the proposed method outperforms the traditional TLD algorithm, and it has a relatively better tracking performance than other state-of-the-art methods.

MLESAC 움직임 추정 기반의 파티클 필터를 이용한 3D 얼굴 추적 (3D Face Tracking using Particle Filter based on MLESAC Motion Estimation)

  • 성하천;변혜란
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제16권8호
    • /
    • pp.883-887
    • /
    • 2010
  • 3D 얼굴 추적(Face tracking)은 보안감시, HCI(Human-Computer Interface), 엔터테인먼트(Entertainment)등 컴퓨터 비전과 관련된 여러 분야의 핵심 기술로서 많은 연구가 진행되고 있다. 하지만, 광범위한 응용분야에도 불구하고 3D 얼굴 추적의 기본적인 높은 연산 비용으로 인하여 그 응용 분야가 모바일 단말기 등의 저 사양 플랫폼에는 많은 한계가 있어왔다. 본 논문에서는 이러한 3D얼굴 추적의 연산 비용을 효과적으로 해결하고 폭 넓게 응용 분야를 확대하기 위하여 MLESAC(Maximum Likelihood Estimation by Sampling Consensus)을 이용한 움직임 추정(Motion Estimation) 기법과 기존의 파티클 필터(Particle Filter)를 결합하여 실행 속도 면에서 빠르면서도 성능 면에서도 우수한 3D 얼굴 추적 알고리즘을 제안한다.

Tracking by Detection of Multiple Faces using SSD and CNN Features

  • Tai, Do Nhu;Kim, Soo-Hyung;Lee, Guee-Sang;Yang, Hyung-Jeong;Na, In-Seop;Oh, A-Ran
    • 스마트미디어저널
    • /
    • 제7권4호
    • /
    • pp.61-69
    • /
    • 2018
  • Multi-tracking of general objects and specific faces is an important topic in the field of computer vision applicable to many branches of industry such as biometrics, security, etc. The rapid development of deep neural networks has resulted in a dramatic improvement in face recognition and object detection problems, which helps improve the multiple-face tracking techniques exploiting the tracking-by-detection method. Our proposed method uses face detection trained with a head dataset to resolve the face deformation problem in the tracking process. Further, we use robust face features extracted from the deep face recognition network to match the tracklets with tracking faces using Hungarian matching method. We achieved promising results regarding the usage of deep face features and head detection in a face tracking benchmark.

Real-time Tracking and Identification for Multi-Camera Surveillance System

  • Hong, Yo-Hoon;Song, Seung June;Rho, Jungkyu
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제10권1호
    • /
    • pp.16-22
    • /
    • 2018
  • This paper presents a solution for personal profiling system based on user-oriented tracking. Here, we introduce a new way to identify and track humans by using two types of cameras: dome and face camera. Dome camera has a wide view angle so that it is suitable for tracking human movement in large area. However, it is difficult to identify a person only by using dome camera because it only sees the target from above. Thus, face camera is employed to obtain facial information for identifying a person. In addition, we also propose a new mechanism to locate human on targeted location by using grid-cell system. These result in a system which has the capability of maintaining human identity and tracking human activity (movement) effectively.

얼굴 정보를 이용한 대형 카메라 네트워크에서의 사람 추적 시스템 (Human Tracking System in Large Camera Networks using Face Information)

  • 이영건
    • 한국정보통신학회논문지
    • /
    • 제26권12호
    • /
    • pp.1816-1825
    • /
    • 2022
  • 본 논문에서는 다양한 해상도의 카메라를 사용하는 감시 카메라 네트워크에서 각 사람을 추적하는 새로운 접근 방식을 제안한다. 다수의 비겹침 카메라 상에서 사람 추적 시 기존에 사용되던 사람 특징 정보는 다양한 카메라 시야 조건에 쉽게 영향을 받는다. 이러한 한계를 극복하기 위해 제안하는 시스템은 외모 정보와 함께 얼굴 정보를 활용한다. 일반적으로 감시 카메라로 촬영하는 사람 영상은 해상도가 낮은 경우가 많기 때문에 추적을 용이하게 하기 위해 저해상도 얼굴에서도 유용한 특징을 추출할 수 있어야 한다. 제안하는 추적 방식에서 사람 얼굴 특징을 추출하기 위해 탐지된 얼굴을 정면화한 후 텍스쳐 기반의 특징을 추출한다. 또한 감시 카메라에 포착된 얼굴의 크기가 매우 작은 경우 얼굴을 확대하는 초해상도 기법도 함께 활용한다. 공개된 데이터셋인 Dana36을 이용하여 수행한 실험결과를 통해 제안된 알고리즘의 우수한 성능을 보여준다.

3D FACE RECONSTRUCTION FROM ROTATIONAL MOTION

  • Sugaya, Yoshiko;Ando, Shingo;Suzuki, Akira;Koike, Hideki
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 2009년도 IWAIT
    • /
    • pp.714-718
    • /
    • 2009
  • 3D reconstruction of a human face from an image sequence remains an important problem in computer vision. We propose a method, based on a factorization algorithm, that reconstructs a 3D face model from short image sequences exhibiting rotational motion. Factorization algorithms can recover structure and motion simultaneously from one image sequence, but they usually require that all feature points be well tracked. Under rotational motion, however, feature tracking often fails due to occlusion and frame out of features. Additionally, the paucity of images may make feature tracking more difficult or decrease reconstruction accuracy. The proposed 3D reconstruction approach can handle short image sequences exhibiting rotational motion wherein feature points are likely to be missing. We implement the proposal as a reconstruction method; it employs image sequence division and a feature tracking method that uses Active Appearance Models to avoid the failure of feature tracking. Experiments conducted on an image sequence of a human face demonstrate the effectiveness of the proposed method.

  • PDF

얼굴 추적을 위한 병렬처리 시스템의 설계 (Design of Parallel Processing System for Face Tracking)

  • 김상호;서영진;김경남;고종국
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 1998년도 가을 학술발표논문집 Vol.25 No.2 (3)
    • /
    • pp.765-767
    • /
    • 1998
  • Many application in human computer interaction(HCI) require tacking a human face and facial features. In this paper we propose efficient parallel processing system for face tracking under heterogeneous networked. To track a face in the video image we use the skin color information and connected components. In terms of parallelism we choose the master-slave model which has thread for each processes, master and slaves, The threads are responsible for real computation in each process. By placing queues between the threads we give flexibility of data flowing

  • PDF

안정적 사람 검출 및 추적을 위한 검증 프로세스 (Verification Process for Stable Human Detection and Tracking)

  • 안정호;최종호
    • 한국정보전자통신기술학회논문지
    • /
    • 제4권3호
    • /
    • pp.202-208
    • /
    • 2011
  • 최근 들어 인간과 컴퓨터의 상호작용을 통해 컴퓨터 시스템을 제어하는 기술에 관한 연구가 진행되고 있다. 이러한 응용분야의 대부분은 얼굴검출을 통해 사용자의 위치를 파악하고 사용자의 제스처를 인식하는 방법을 포함하고 있으나, 얼굴검출 성능은 아직 미흡한 실정이다. 사용자의 위치가 안정적으로 검출되지 못 하는 경우에는 제스처 인식 등의 인터페이스 성능은 현격하게 저하된다. 따라서 본 논문에서는 피부색과 얼굴검출의 누적 분포를 이용하여 동영상에서 안정적으로 얼굴을 검출할 수 있는 알고리즘을 제안하고, 실험을 통해 알고리즘의 유용성을 증명하였다. 제안한 알고리즘은 대응행렬 분석을 적용하여 사람을 추적하는 분야에 응용이 가능하다.