• Title/Summary/Keyword: Human erythrocytes

Search Result 215, Processing Time 0.029 seconds

The Stabilizing Effects of Phospholipids on the Human Erythrocyte Membranes (인체적혈구막(人體赤血球膜) 안정화(安定化)에 미치는 인지질(燐脂質)의 영향(影響))

  • Kim, Yong-Ki;Kim, Jae-Back
    • Journal of Pharmaceutical Investigation
    • /
    • v.11 no.2
    • /
    • pp.1-10
    • /
    • 1981
  • Phospholipids were examined for their capacity to protect human erythrocytes against hemolysis induced by hypotonic solution, p-hydroxymercuribenzoate or hematin. The following results were obtained. 1. Phosphatidyl choline, lysophosphatidyl choline and phophatidyl ethanoleamine as well as chlorpromazine prevented the osmotic hemolysis of human erythrocytes which occurred due to water influx into erythrocytes from medium, but showed no effect on hematin-induced hemolysis which occurred without the volume change of erythrocytes. 2. Human erythrocytes were found to be most sensitive to the antihemolytic action of phospholipids among mammalian erythrocytes from sheep, rabbit, rat and mouse. 3. Phospholipids at the concentrations showing their strong antihemolytic effect on human erythrocytes against osmotic hemolysis had no influence on methylene blue uptake and volume change of erythrocytes in hypotonic solution. 4. Phospholipids increased erythrocyte deformability 2 to 3 times over control group and there was aclose relationship between their antihemolytic action and increase of deformability as a function of their concentrations. 5. The phospholipids increased the resistance to osmotic hemolysis of human erythrocytes by increasing membrane elasticity through their incorporation into lipid bilayer without altering glucose metabolism and water influx to erythrocytes.

  • PDF

Electrophoretic analysis of the major proteins of bovine erythrocyte membrane: Their relation to slow erythrocyte sedimentation rate (우(牛) 적혈구막(赤血球膜) 단백(蛋白)의 전기영동법(電氣泳動法에) 의한 분석(分析) -낮은 적혈구(赤血球) 심강속도(沈降速度)와의 관계(關係)-)

  • Bahk, Young-woo;Lee, Bang-whan
    • Korean Journal of Veterinary Research
    • /
    • v.29 no.1
    • /
    • pp.13-20
    • /
    • 1989
  • The proteins of the bovine erythrocyte membrane were analyzed by polyacrylamide gel electrophoresis in sodium dodecyl sulfate, and their relations to the slow sedimentation rate of bovine erythrocytes were investigated by treating the erythrocytes with trypsin. The erythrocyte sedimentation rates of bovine erythrocytes from Holstein and Korean native cattle were very slow compared with the human one (1/7 as slow as the human one) as reported previously. However, when human and Holstein erythrocytes were treated with trypsin (0.2 and 0.5 mg/ml) for 1 hour at ${37^{\circ}C}$, their sedimentation rates were markedly accelerated while the sedimentation rate of Korean native cattle's erythrocytes were not affected. Although the general protein profiles of the bovine erythrocyte membranes were almost similar to that of human, bovine erythrocyte membranes showed one additional protein band, called band Q in this study, which migrated electrophoretically to the mid-position between band 2 and band 3 in human erythrocyte membranes. Treatment of Holstein and human erythrocytes with trypsin caused a decrease or disapperance of the band Q from the erythrocyte membrane. Although the band Q in Korean native cattle's erythroyte membrane was decreased by trypsin treatment of the erythrocytes, the magnitude of the decrement was not so pronounced as in the case of human and Holstein erythrocytes. The glycoprotein profiles of the bovine erythrocyte membranes revealed by periodic acid-Schiff stain showed a marked difference from that of human. The PAS-1 (glycophorin) and PAS-2 (sialoglycoprotein) present in human erythrocyte membrane were almost absent from the bovine erythrocyte membranes. Instead, the bovine erythrocyte membranes showed a strong PAS-positive band near the origin of the electrophorograms, which is named as PAS-B in this study. The PAS-B band was disappered completely by the trypsin treatment of Holstein erythrocytes whereas the PAS-B band in Korean native cattle's erythrocyte membrane still remained after the trypsin treatment. The trypsin treatment of Korean native cattle's erythrocytes, however, led to the appearance of small molecular weight peptides, indicating that the high molecular weight glycoproteins were degraded by trypsin as in human and Holstein ones. These results suggest that the slow sedimentation rate of bovine erythrocytes is due in part to the presence of band Q protein fraction and PAS-B glycoprotein in the bovine erythrocytes.

  • PDF

Adsorption of Nalidixic Acid to Human Erythrocytes and Plasma (Nalidixic Acid의 혈구(血球) 및 혈장(血漿)에 대(對)한 흡착(吸着))

  • Kim, Shin-Keun
    • Journal of Pharmaceutical Investigation
    • /
    • v.4 no.1_2
    • /
    • pp.25-30
    • /
    • 1974
  • The adsorption of nalidixic acid on human erythrocytes was found to expressed by Freundlich's isotherm. The amount of adsorption of nalidixic acid on erythrocytes increased with an increase of pH. The adsorption of nalidixic acid on human plasma was found to expressed at Scatchard's equation by the equilibrium dialysis method. An influence of pH on adsorption of nalidixic acid to human plasma proteins was studies at pH 4-10. It was found that the degree of adsorption increase with the increase of pH from 4-6, but descreased above pH 9.

  • PDF

Protective Effects of Auraptene against Free Radical-Induced Erythrocytes Damage

  • Khadijeh Jamialahmadi;Amir Hossein Amiri;Fatemeh Zahedipour;Fahimeh Faraji;Gholamreza Karimi
    • Journal of Pharmacopuncture
    • /
    • v.25 no.4
    • /
    • pp.344-353
    • /
    • 2022
  • Objectives: Auraptene is the most abundant natural prenyloxycoumarin. Recent studies have shown that it has multiple biological and therapeutic properties, including antioxidant properties. Erythrocytes are constantly subjected to oxidative damage that can affect proteins and lipids within the erythrocyte membrane and lead to some hemoglobinopathies. Due to the lack of sufficient information about the antioxidant effects of auraptene on erythrocytes, this study intended to evaluate the potential of this compound in protecting radical-induced erythrocytes damages. Methods: The antioxidant activity of auraptene was measured based on DPPH and FRAP assays. Notably, oxidative hemolysis of human erythrocytes was used as a model to study the ability of auraptene to protect biological membranes from free radical-induced damage. Also, the effects of auraptene in different concentrations (25-400 µM) on AAPH-induced lipid/protein peroxidation, glutathione (GSH) content and morphological changes of erythrocytes were determined. Results: Oxidative hemolysis and lipid/protein peroxidation of erythrocytes were significantly suppressed by auraptene in a time and concentration-dependent manner. Auraptene prevented the depletion of the cytosolic antioxidant GSH in erythrocytes. Furthermore, it inhibited lipid and protein peroxidation in a time and concentration-dependent manner. Likewise, FESEM results demonstrated that auraptene reduced AAPH-induced morphological changes in erythrocytes. Conclusion: Auraptene efficiently protects human erythrocytes against free radicals. Therefore, it can be a potent candidate for treating oxidative stress-related diseases.

Hemolytic Activity of Culture Supernatant of Xenorhabdus nematophilus, a Symbiotic Bacterium of Entomopathogenic Nematodes

  • Ryu, Keun-Garp;Bae, Jun-Sung;Kwack, Kyu-Bum;Kwon, O-Yul;Park, Sun-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.3
    • /
    • pp.526-529
    • /
    • 2002
  • Lysis of erythrocytes isolated from human, rabbit, and mouse blood samples was investigated with the culture supernatant of Xenorhabdus nematophilus in a primary form. Prior to use, the culture supernatant of the bacteria was concentrated and the concentrate was dialyzed against Tris-HCl buffer (10 mM, pH 8.1) by ultrafiltration using PM-5 membrane with a molecular weight cut-off of 5,000. At $30^{\circ}C$, the supernatant exhibited no lytic activity towards three types of erythrocytes. However, at $4^{\circ}C$, the supernatant showed selective lytic activity towards rabbit erythrocytes within 90 min. yet did not lyze human or mouse erythrocytes. Microscopic examination clearly revealed that most of the rabbit erythrocytes had been fumed into ghost forms.

Electrophoretic analysis of the major protein of erythrocyte membrane in man, bovine, horse, and dog: their relation to erythrocyte sedimentation rate (사람, 소, 말, 개의 적혈구막 단백의 전기 영동법에 의한 분석 - 적혈구 침강 속도와의 관계 -)

  • Bahk, Yeong-woo
    • Korean Journal of Veterinary Research
    • /
    • v.41 no.1
    • /
    • pp.21-28
    • /
    • 2001
  • The protein of the bovine, horse and dog erythrocyte membrane were analyzed by polyacrylamide gel eletrophoresis in sodium dodecyl sulfate and their relation to the sedimentation rate of animal erythrocytes were investigated by treating the erythrocytes with proteinases such as trypsin and chymotrypsin. Protein content in erythrocyte membrane was in human, in Jindo dog, in cattle and in horse, showing similar in among. The erythrocyte sedimentation rates bovine erythrocytes from Hostein and Korean native cattle were very slow compared with the human one(1/7 as slow as the human one) as reported previously. Although the general protein profiles of the bovine erythrocyte membranes were almost similar to that of human, bovine erythrocyte membranes showed one additional protein band, called band Q in this study, which migrated electrophoretically to the mid-position between band 2 and band 3 in human erythrocyte membranes. The erythrocyte sedimentation of race horse were very fast compared with the human one are reported previously. Although the general protein profiles of the race horse erythrocyte membranes were almost similar to that of human, band 3 content was showing higher in race horse(34.7%) than in human(25.3%). The general protein profile of the Jindo dog erythrocyte membrane was almost similar to the human patterns, Jindo dog erythrocyte membranes showed one absent protein band. It was band 7. The glycoprotein profiles of the bovine erythrocyte membranes revealed by periodic acid-Schiff(PAS) stain showed a marked difference from that of human. The PAS-1(glycophorin) and PAS-2(sialoglycoprotein) present in human erythrocyte membrane were almost absent from the bovine erythrocyte membranes showed a strong PAS-positive band near the origin of the electraphorograms, which is named as PAS-B in this study. The PAS-1 and PAS-2 present in human erythrocyte membrane were almost absent from race horse erythrocyte membranes, but PAS-2 was more in only race horse from that of human. The PAS-1 and PAS-2 were absolutely absent from the Jindo dog erythrocyte membrane. These results suggest the slow sedimentation rate of bovine erythrocytes is due in part to the presence of band Q protein fraction and PAS-B glycoprotein in the bovine erythrocytes, and that the fast sedimentation rate of race horse erythrocyte is due in part to the presence of more band 3 protein fraction and PAS-E glycoproteins in the race horse erythrocytes.

  • PDF

Studies on Hemolysis of Vibrio Parahaemolyticus to Various Erythrocytes (각종 적혈구에 대한 장염비브리오의 용혈성에 관한 연구)

  • Ju, Jin-Woo;Kim, Young-Hee
    • The Journal of the Korean Society for Microbiology
    • /
    • v.19 no.1
    • /
    • pp.49-54
    • /
    • 1984
  • The authors isolated Vibrio parahaemolyticus from sea water, sea mud and various marine products in Busan shore area from 1981 to 1982, Among 100 isolated strains, 66 strains showed positive reaction in Kanagawa phenomenon. With the above 66 strains, the authors carred out test for detecting hemolysis activity of V.parahaemolyticus on human, rabbit, chicken, pig, goat, sheep and cow erythrocytes, in different media, such as modified Wagatsuma, nutrient, peptone and brain heart infusion agar plates media. The following results were obtained: 1. The media which can be used for Kanagawa phenomenon of V. parahoemolyticus were modified Wagatsuma, nutrient, peptone agar media, but not brain heart infusion agar medium. 2. The erythrocytes which showed positive Kanagawa phenomenon were those of human, rabbit, chicken and pig, but sheep, goat and cow erythrocytes showed no sensitivities.

  • PDF

Studies on the Isolation of Vibrio damsela (Vibrio damsela의 분리연구)

  • Ju, Jin-Woo;Kim, Il
    • The Journal of the Korean Society for Microbiology
    • /
    • v.22 no.3
    • /
    • pp.225-232
    • /
    • 1987
  • Authors studied on the isolation of V. damsela from sea water, fish and shellfish at the Keoje Hae keumkang on the southern sea and at Hongdo island and Heucksan island on the western sea of Korea from May to September in 1986. Authors investigated for the isolated strains to bacteriological identification, hemolysis about various erythrocytes and antibiotic susceptibilities. The results obtained were as follows: 1. V. damsela was isolated 14 strains from total 383 specimens; 233 cases of sea water, 40 cases of fish and 110 cases of shellfish, respectively. Eight strains were isolated from sea water and 6 strains were isolated from shellfish. 2. The biochemical characteristics which differentiate it from other Vibrio species were indole negative, ornithine negative, Voges-Proskauer positive, arginine positive, galactose positive, glucose positive, maltose positive, mannose positive, trehalose positive, and growth in nutrient broth with 1% to 6% NaCl. 3. On hemolysis reaction on blood agar media using human, rabbit and guinea pig erythrocytes, human erythrocytes were 11 strain positive, rabbit erythrocytes were 12 strain positive and guinea pig erythrocytes were 13 strain positive. 4. Senistivity test using with chemotherapeutic agents of "BioLab" Microbial Sensitivity Test Discs were generally sensitived to amikacin, ampicillin, cephalothin, chloramphenicol, clindamycin, erythromycin, gentamycin, kanamycin, methicillin, penicillin, streptomycin, tetracycline and tobramycin, respectively, but were resistant to lincomycin.

  • PDF

Effect of Lead(IV) Acetate on Procoagulant Activity in Human Red Blood Cells

  • Kim, Keun-Young;Lim, Kyung-Min;Shin, Jung-Hun;Noh, Ji-Yoon;Ahn, Jae-Bum;Lee, Da-Hye;Chung, Jin-Ho
    • Toxicological Research
    • /
    • v.25 no.4
    • /
    • pp.175-180
    • /
    • 2009
  • Lead (Pb) is a ubiquitously occurring environmental heavy metal which is widely used in industry and human life. Possibly due to a global industrial expansion, recent studies have revealed the prevalent human exposure to Pb and increased risk of Pb toxicity. Once ingested by human, 95% of absorbed Pb is accumulated into erythrocytes and erythrocytes are known to be a prime target for Pb toxicity. Most of the studies were however, focused on $Pb^{2+}$ whereas the effects of $Pb^{4+}$, another major form of Pb on erythrocytes are poorly understood yet. In this study, we investigated and compared the effects of $Pb^{4+}$, $Pb^{2+}$ and other heavy metals on procoagulant activation of erythrocytes, an important factor for the participation of erythrocytes in thrombotic events in an effort to address the cardiovascular toxicity of $Pb^{4+}$. Freshly isolated erythrocytes from human were incubated with $Pb^{4+}$, $Pb^{2+}$, $Cd^{2+}$ and $Ag^+$ and the exposure of phosphatidylserine (PS), key marker for procoagulant activation was measured using flow cytometry. As a result, while $Cd^{2+}$ and $Ag^+$ did not affect PS exposure, $Pb^{4+}$ and $Pb^{2+}$ induced significantly PS exposure in a dose-dependent manner. Of a particular note, $Pb^{4+}$ induced PS exposure with a similar potency with $Pb^{2+}$. PS bearing microvesicle (MV), another important contributor to procoagulant activation was also generated by $Pb^{4+}$. These PS exposure and MV generation by $Pb^{4+}$ were well in line with the shape change of erythrocyte from normal discocytes to MV shedding echinocytes following $Pb^{4+}$ treatment. Meanwhile, nonspecific hemolysis was not observed suggesting the specificity of $Pb^{4+}$-induced PS exposure and MV generation. These results indicated that $Pb^{4+}$ could induce procoagulant activation of erythrocytes through PS exposure and MV generation, suggesting that $Pb^{4+}$ exposure might ultimately lead to increased thrombotic events.

Electrophoretic analysis of the major proteins of ruminant erythrocyte membrane: Their relation to slow erythrocyte sedimentation rate (반추동물 적혈구막 단백의 전기영동법에 의한 분석 -낮은 적혈구침강속도와의 관계-)

  • Lee, Bang-whan;Bahk, Young-woo
    • Korean Journal of Veterinary Research
    • /
    • v.29 no.4
    • /
    • pp.445-455
    • /
    • 1989
  • The proteins of the ruminant erythrocyte membranes were analysed by polyacrylamide gel electrophoresis in sodium dodecyl sulfate, and their relations to the slow erythrocyte sedimentation rate(ESR) of the ruminants were investigated by treating the erythrocytes with proteinases such as trypsin, chymotrypsin and pronase, and glycosidases such as neuraminidase and galactosidase. Protein content in the erythrocyte membrane was $2.85{\pm}0.28$ in human, $3.60{\pm}0.41$ in Korean cattle, $3.71{\pm}0.36$ in Holstein, $4.13{\pm}0.83$ in Korean native goat and $3.94{\pm}0.56mg/ml$ in sheep, showing higher in ruminant animals than in human(p<0.01). Although the general protein profiles of the ruminant erythrocyte membranes were almost similar to that of human, all the ruminant erythrocyte membranes showed one additional protein band, called band-Q in the previous report on proteins of bovine erythrocyte membrane, which migrated electrophoretically to the mid position between band-2 and band-3 in human erythrocyte membranes. The glycoprotein profiles of ruminant erythrocyte membranes revealed by periodic acid Schiff(PAS) stain showed a marked difference from that of human. The PAS-1(glycophorin) and PAS-2(sialoglycogrotein) present in human erythrocyte membranes were almost absent from the ruminant animals. Instead, a strong PAS-positive band near the origin of the electrophorograms, which was named as PAS-B in the previous report on proteins of bovine erythrocyte membranes, was shown in the ruminant animals except sheep. In addition, the erythrocyte membranes of Korean native goat and sheep showed a moderate PAS-negative band near the tracking dye of the electrophorograms, which was named as PAS-G in this study. In the erythrocyte treated with the enzymes, the migration of each protein fracture of erythrocyte membranes in response to each enzyme was diverse according to different species or breed of ruminant animals. Among others, band-Q present in ruminants was slightly or moderately decreased by trypsin-, chymotrypsin-, and pronase- treatments of the erythrocytes, but not only in sheep. It was particularly noticeable that PAS-B, a fraction of glycoprotein, present in ruminants except sheep, was better digested by proteinases than by glycosidases, showing remarkable increase(p<0.01) of the ESR in accord with complete digestion(disappearance) of the PAS-B band by pronase, trypsin or chymotrypsin treatment of erythrocytes. In sheep, there was almost no any response to the various enzymes in general protein and glycoprotein profiles of the erythrocyte membranes except PAS-G, which was markedly decreased by pronase treatment of the erythrocytes. Nevertheless, the ESRs were accelerated in erythrocytes treated with pronase, trypsin, chymotrypsin and neuraminidase. Erythrocyte osmotic fragility was increased in erythrocytes treated with only pronase among five enzymes in all the human and ruminant animals used in this study.

  • PDF