• Title/Summary/Keyword: Human Walking

Search Result 485, Processing Time 0.043 seconds

Relationship between straight and curved walking abilities among inpatients in the subacute phase according to walking independence level

  • Fujii, Kazuya;Kobayashi, Masaki;Sato, Miyuki;Asakawa, Yasuyoshi
    • Physical Therapy Rehabilitation Science
    • /
    • v.7 no.2
    • /
    • pp.49-53
    • /
    • 2018
  • Objective: This study was performed to examine differences in the association between straight and curved walking abilities of inpatients in the subacute phase and walking independence level. Design: Cross-sectional study. Methods: Subjects were divided into an independent group and a supervised group (n=10 each) by walking independence level within the ward decided by physical therapists. Inclusion criteria comprised the ability to ambulate independently within the ward, regardless of the use of walking aids. Straight walking abilities (walking velocity, stride length, and cadence) were evaluated using the 5-meter walk test. Curved walking abilities were evaluated using the Figure-of-8 Walk Test (F8W) and the 3-meter zigzag walk test (3ZW). Differences in associations between straight and curved walking abilities of inpatients were examined by calculating correlation coefficients between straight and curved walking abilities. Results: Age, walking velocity, stride length, F8W and 3ZW varied markedly between independent and supervised groups. In the independent group, F8W and 3ZW correlated significantly with walking velocity and cadence (p<0.05). In the supervised group, F8W correlated significantly with walking velocity and stride length (p<0.05), but 3ZW did not correlate significantly with straight walking abilities. Conclusions: The association between straight and curved walking abilities varied between inpatients who could ambulate independently and inpatients requiring supervision for ambulating. These differences may depend on skill on straight and curved walking abilities. There is a possibility that curved walking exercise is necessary for supervised group.

Estimating Human Walking Pace and Direction Using Vibration Signals (진동감지를 이용한 사용자 걸음걸이 인식)

  • Jeong, Eunseok;Kim, DaeEun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.5
    • /
    • pp.481-485
    • /
    • 2014
  • In service robots, a number of human movements are analyzed using a variety of sensors. Vibration signals from walking movements of a human provide useful information about the distance and the movement direction of the human. In this paper, we measure the intensity of vibrations and detect both human walking pace and direction. In our experiments, vibration signals detected by microphone sensors provide good estimation of the distance and direction of a human movement. This can be applied to HRI (Human-Robot Interaction) technology.

Kinematics and Kinetics of the Lower Limbs of a Walking Shoe with a Plate Spring and Cushioning Elements in the Heel during Walking

  • Park, Seung-Bum;Stefanyshyn, Darren;Pro, Stergiou;Fausto, Panizzolo;Kim, Yong-Jae;Lee, Kyung-Deuk
    • Korean Journal of Applied Biomechanics
    • /
    • v.20 no.1
    • /
    • pp.13-23
    • /
    • 2010
  • The purposes of this study was to investigate the biomechanical influence of the walking shoe with a plate spring in the heel and interchangeable heel cushioning elements. Eighteen subjects walked in three conditions: 1) the walking shoes Type A-1 with a soft heel insert, 2) the Type A-2 shoe with a stiff heel insert, 3) a general walking shoe(Type B). Ground reaction forces, leg movements, leg muscle activity and ankle, knee and hip joint loading were measured and calculated during overground walking. During walking, the ankle is a few degrees more dorsiflexed during landing and the knee is slightly more flexed during takeoff with the Type A shoes. As a result of the changes in the walking movement, the ground reaction forces are applied more quickly and the peak magnitudes are higher. Muscle activity of the quadricep, hamstring and calf muscles decrease during the first 25% of the stance phase when walking in the Type A shoes. The resultant joint moments at the ankle, knee and hip joints decrease from 30-40% with the largest reductions occurring during landing.

Dimensional Improvement Strategies for Walking Aids for Elderly Women (고령 여성을 위한 보행 보조차 치수 개선 방안)

  • Jinhee Park;Kil Ho Jung
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.48 no.1
    • /
    • pp.108-119
    • /
    • 2024
  • In this study, we aimed to propose enhancements to the dimensions and design of walking aids tailored for elderly women. Specifically, we focused on wheeled walking assistance devices and aligned each structural component with the appropriate human body dimensions to suggest appropriate product dimensions organized by size clusters, aiming to maximize the practicality of the results. We extracted essential factors required for product design, including human body size elements. The dimension extraction method was clustered to establish connections between key human body parameters-such as height, weight, and age groups-and product dimensions. We conducted a comparative analysis of walking aid product dimensions according to the design elements and sizes of models currently available in the market. The outcomes of this study offer objective, data-driven insights into areas where existing models on the market could benefit from improvement and we anticipate that the findings of this study will provide a solid, quantitative foundation for individuals when selecting the most suitable model for their needs.

Design of a Virtual Walking Machine for Virtural Reality Interface (가상현실 대화용 가상걸음 장치의 설계)

  • 윤정원;류제하
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.11
    • /
    • pp.1044-1051
    • /
    • 2004
  • This paper described a novel locomotion interface that can generate infinite floor for various surface, named as virtual walking machine. This interface allows users to participate in a life-like walking experience in virtual environments, which include various terrains such as plains, slopes and stair ground surfaces. The interface is composed of two three-DOF (X, Y, Yaw) planar devices and two four-DOF (Pitch, Roll, Z, and relative rotation) footpads. The planar devices are driven by AC servomotors for generating fast motions, while the footpad devices are driven by pneumatic actuators for continuous support of human weight. To simulate natural human walking, the locomotion interface design specification are acquired based on gait analysis and each mechanism is optimally designed and manufactured to satisfy the given requirements. The designed locomotion interface allows natural walking(step: 0.8m, height: 20cm, load capability: 100kg, slope:30deg) for various terrains.

Intelligent Walking of Humanoid Robot for Stable Walking on a Decent (휴머노이드 로봇의 경사면 내리막 보행을 위한 지능보행 연구)

  • Kim, Dong-Won;Park, Gwi-Tae
    • The Journal of Korea Robotics Society
    • /
    • v.1 no.2
    • /
    • pp.197-202
    • /
    • 2006
  • We present the synergy effect of humanoid robot walking down on a slope and support vector machines in this paper. The biped robot architecture is highly suitable for the working in the human environment due to its advantages in obstacle avoidance and ability to be employed as human substitutes. But the complex dynamics in the robot and ground makes robot control difficult. The trajectory of the zero moment point (ZMP) in a biped walking robot is an important criterion used for the balance of the walking robots. The ZMP trajectory as dynamic stability of motion will be handled by support vector machines (SVM). Three kinds of kernels are also employed, and each result from these kernels is compared to one another.

  • PDF

Analysis of a Dynamic PLS of the Biped Walking RGO-Robot for a Trainning of Rehabilitation (척수마비 재활훈련용 이족보행 RGO 로봇의 Dynam ic PLS 생체역학적 특성분석 <응력해석과 FEM을 중심으로>)

  • 김명회;장대진;박창일;박영필
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.136-141
    • /
    • 2002
  • This paper presents a design and a control of a biped walking RGO-robot and dynamic walking simulation for this system. The biped walking RGO-robot is distinguished from other one by which has a very light-weight and a new AGO type with servo motors. The gait of a biped walking RGO-robot depends on the constrains of mechanical kinematics and initial posture. The stability of dynamic walking is investigated by ZMP(Zero Moment Point) of the biped walking RGO-robot. It is designed according to a human wear type and is able to accomodate itself to human environments. The joints of each leg are adopted with a good kinematic characteristics. To test of the analysis of joint kinematic properties, we did the strain stress analysis of dynamic PLS and the study of FEM with a dynamic PLS. It will be expect that the spinal cord injury patients are able to train effectively with a biped walking AGO-robot.

  • PDF

Design and Control of a Dynamic PLS of the Biped Walking RGO-Robot for a Trainning of Rehabilitation (재활훈련용 이쪽보행 RGO 로봇의 Dynamic PLS 설계와제어 - <응력해석과 FEM을 중심으로>)

  • 김명회;장대진;박창일;박영필
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.238-243
    • /
    • 2002
  • This paper presents a design and a control of a biped walking AGO-robot and dynamic walking simulation for this system. The biped walking RGO-robot is distinguished from other one by which has a very light-weight and a new RGO type with servo motors. The gait of a biped walking AGO-robot depends on the constrains of mechanical kinematics and initial posture. The stability of dynamic walking is investigated by ZMP(Zero Moment Point) of the biped walking AGO-robot. It is designed according to a human wear type and is able to accomodate itself to human environments. The joints of each leg are adopted with a good kinematic characteristics. To test of the analysis of joint kinematic properties, we did the strain stress analysis of dynamic PLS and the study of FEM with a dynamic PLS. It will be expect that the spinal cord injury patients are able to train effectively with a biped walking RGO-robot.

  • PDF

Gait Implementation of Biped Robot for a continuous human-like walking (이족 보행 로봇의 인간과 유사한 지속보행을 위한 걸음새 구현)

  • Jin, Kwang-Ho;Jang, Chung-Ryoul;Koo, Ja-Hyuk;Choi, Sang-Ho;Kim, Jin-Geol
    • Proceedings of the KIEE Conference
    • /
    • 1999.07g
    • /
    • pp.3092-3094
    • /
    • 1999
  • This paper deals with the gait generation of Biped Walking Robot (IWR-III) to have a continuous walking pattern like human. For this, trajectory planning with the consideration of kick action is done in each walking step, and the coordinate transformation is done for simplifying the kinematics. The trunk moves continuously for all walking time and moves toward Z-axis. Balancing motion is acquired by FDM(Finite Difference Method) during the walking. By combining 4-types of pre-defined steps, multi-step walking is done. Using numerical simulator, dynamic analysis and system stability is confirmed. Walking motion is visualized by 3D-Graphic simulator. As a result, the motion of balancing joints can be reduced by the trunk ahead effect during kick action, and impactless smooth walking is implemented by the experiment.

  • PDF