• Title/Summary/Keyword: Human Vibration Index

Search Result 41, Processing Time 0.026 seconds

Study on the Sound Quality Evaluation Method for the Vehicle Diesel Engine Noise (승용차 디젤 엔진 소음에 대한 음질 평가 기법 연구)

  • Kwon, Jo-Seph;Kim, Chan-Mook;Kim, Ki-Chang;Kim, Jin-Taek
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.10
    • /
    • pp.883-889
    • /
    • 2011
  • The brand sound of vehicle diesel engine is recently one of the important advantage strategies in the automotive company. Because various noise components masked under high frequency level can be audible in quieter driving situation. Many researches have been carried out for subjective and objective assessments on vehicle sounds and noises. In particular, the interior sound quality has been one of research fields that can give high quality feature to vehicle products. Vehicle interior noise above 500 Hz is usually controlled by sound package parts. The materials and geometries of sound package parts directly affect on this high frequency noise. This paper describes the sound quality evaluation method for the vehicle diesel engine noise to establish objective criteria for sound quality assessment. Considering the sensitivity of human hearing to impulsive sounds such as diesel noise, the human auditory mechanism was simulated by introducing temporal masking in the time domain. Furthermore, each of the human auditory organs was simulated by computer codes, providing reasonable analytical explanations of typical human hearing responses to diesel noise. This method finally provides the sound quality index of vehicle diesel engine noise that includes high frequency intermittent offensive sounds caused by impacting excitations of combustion and piston slap.

Review on Human Comfort Criteria in Tall Buildings (초고층건축물의 수평진동사용성 평가 기준의 재고)

  • Cho, Kang-Pyo;Jeong, Seung-Hwan;Cho, Gi-Sung;Km, Mu-Hwan
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.410-415
    • /
    • 2008
  • This paper presents review on human comfort criteria in major codes and standards for tall buildings. In general, human comfort criteria of tall buildings have been used by magnitude of wind-induced acceleration response. Two different indexes in determination of the magnitude have been used: the peak value which occurs during a period of time and the rms value averaged over this same period. These distinctive acceleration indexes are discussed in detail and each criterion is reviewed and compared. The distinctions arisen because of the different wave forms, or acceleration signatures are addressed. It is described that which index of acceleration should be adopted in establishment of Korean human comfort criteria. In addition, some arguments from a technical standpoint that favor the use of each index are presented.

  • PDF

Human Body Vibration Analysis under Consideration of Seat Dynamic Characteristics (시트 동특성을 고려한 인체 진동 해석)

  • Kang, Juseok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.12
    • /
    • pp.5689-5695
    • /
    • 2012
  • In this study, vibration properties of seat and human body are analyzed through test and numerical analysis methods by taking into account the viscoelastic characteristics of polyurethane foam as seat material which is applied for vehicle. These viscoelastic characteristics which show nonlinear and quasi-static behavior are obtained by compression test. In addition, the viscous elastic property of polyurethane foam is modelled mathematically by using convolution integral and nonlinear stiffness model. In order to analyze the performance on ride comfort of seat, vertical vibration model is established by using dynamic model of seat and vertical vibration model of human body at ISO5982, and so the related motion equations are derived. A numerical analysis simulation is applied by using the nonlinear motion equation with Runge-Kutta integral method. The dynamic responses of seat and human body on the input of vibration acceleration measured at the floor of the railway vehicle are examined. The variation of the index value at ride comfort on seat design parameters is analyzed and the methodology on seat design is suggested.

Development of Sound Quality Index of a SUV' Axle for Evaluation of Enhancement of Sound Quality Based on Human Sensibility (인간의 감성에 기초한 승합차량 액슬의 음질 인덱스 개발에 대한 연구)

  • Lim Jong-Tae;Jo Yun-Kyoung;Kim Jong-Youn;Lee Sang -Kwon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.654-660
    • /
    • 2006
  • There are various sounds in the car as much as cats have many mechanical parts. These sounds make various sound qualities. The international competition in car markets has continuously required the research about the sound quality of a car. The domestic carmakers have also invested a lot of money for the research and development of sound quality. Car axle plays an important role in a vehicle and its NVH development is also important. By this time, NVH development of car axle is mainly based on the reduction of sound pressure level(dBA), which cannot gives, the satisfaction to the customers in view of the sound quality of a vehicle. Therefore, in this project, a sound quality index evaluating the sound quality of axle noise based on human sensibility is developed and applied to the development of the sound quality of axle noise

  • PDF

A Study on Development of Sound Quality Index of a Refrigerator Based on Human Sensibility Engineering (감성공학을 기초한 냉장고의 음질 인덱스 개발에 관한 연구)

  • 구진회;김중래;이은영
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.11
    • /
    • pp.1195-1202
    • /
    • 2004
  • The international competition in refrigerator markets has continuously required the research for sound quality of a refrigerator to improve the quality of a life. In this paper, A new method for evaluation of the sound quality of a refrigerator is developed based on human sensibility engineering by using ANN(artificial neural network). In this paper, the loudness and the sharpness of the refrigerator's signals was used for the input value in ANN's training process because the loudness and the sharpness has a good correlation between the output of the ANN and the target of the individual evaluation In the training process. Two input factor was used repeatedly in the training process to get more optimum weighting value. And then finally we developed the sound quality index of a refrigerator. The developed sound quality index was confirmed by the 96.5 % of correlation between the output of the ANN and the real evaluation. It will be applied to evaluate the sound quality of a refrigerator in the industry.

A study on the capability of inverse A weighting through the auditory perception test (청감실험을 통한 역A특성 평가방법의 타당성 검토)

  • 이성찬;전진용
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.586-591
    • /
    • 2002
  • Recently, the research and discussion to set up the evaluation standard for nor impact noises in multistory residential buildings has been vividly carried out In Korea. Therefore, the correlation between the methods and auditory responses was investigated through this research to investigate the applicability of the L index evaluation method and the reverse A characteristics evaluation method that are listed in JIS A 1419 since Japanese circumstance are similar to Korean after evaluating the duality of Korean multistory residential buildings. As a result, it was found that the correlation between the value resulted from L index evaluation and the value from reverse A characteristics evaluation is high. In addition, it was also revealed that human responses to each Impacter was similar. Consequently, it is considered th:31 the tendency about the two methods would be similar.

  • PDF

Study About the Evaluation of Driving Stability Using 3-axis Accelerometer Test (3축 가속도 시험을 통한 도로 노면의 주행 안정성 평가에 대한 연구)

  • Lee, Dong-Hyun;Kim, Ji-Won;Mun, Sung-Ho;Jeong, Won-Seok
    • International Journal of Highway Engineering
    • /
    • v.14 no.3
    • /
    • pp.141-149
    • /
    • 2012
  • This paper attempts to evaluate driving stability by the vibration of human body. The purpose of this research is to establish an evaluation methodology for controling the quality of road surface. The study was conducted to investigate the relationship between road surface profiles (IRI, International Roughness Index) and the fatigue caused by the vibration of human body. Furthermore, 3-axis acceleration in driving vehicles was examined based on sampling sections under various road conditions. The acceleration value of frequency bands were analyzed by the characteristics of road surface, and realized the range of human influence by conditions and type of road surface with ISO-2631 standards. In general, more human fatigue by vehicle vibration was appeared in concrete pavements with high IRIs based on the analysis from given test data. Whereas, The SMA asphalt pavement and the diamond grinded concrete pavement reduce the human fatigue.

Comparison and Analysis for Evaluation of Ride and SEAT Index through Theoretical Seat-Human Body Model and Vehicle Test (시트-인체 해석 모델링과 차량 주행 시험을 통한 차량 승차감 평가와 시트 지수의 비교 및 분석)

  • Son, In-Suk;Kim, Jung-Hoon;Kang, Yeon-June
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.4
    • /
    • pp.1-9
    • /
    • 2009
  • A simplified model of seat-human body is presented to analyze vibrations of human body on a seat of vehicle. The theoretical model having seven degrees-of-freedom is composed of the inter-connected masses, springs and dampers. Until now, evaluation of ride comfort has been usually performed only through vehicle tests. This study aims to complement shortcomings of conventional vehicle tests in evaluation of ride comfort by using the theoretical model. The acceleration values of the human body are obtained from frequency response functions of the theoretical model. Thereafter, Ride and SEAT indexes are acquired by considering response characteristics of the human body for the 12 axes that are presented in BS 6841. A vehicle test is carried out to measure the acceleration values for the three parts of the human body such as upper body, hip and foot. Ride and SEAT indexes of the vehicle test are also obtained by considering the response characteristics of the human body, of which results are compared with the values from the theoretical model. It is found that the theoretical results are in good agreement with the experimental results.

A Study on Development of Sound Quality Index of a Refrigerator Based on Human Sensibility Engineering (인공지능망을 이용한 냉장고 정상 가동 운전 상태의 음질 인덱스 개발)

  • 구진회;김중래;이은영;이상권
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.991-996
    • /
    • 2004
  • The international competition in refrigerator markets has continuously required the research for sound quality of a refrigerator to improve the quality of a life. In this paper, A new method for evaluation of the sound quality of a refrigerator is developed based on human sensibility engineering by using ANN(Artificial neural network). Finally it is applied to evaluate the sound qualify of refrigerator on the production line.

  • PDF