• Title/Summary/Keyword: Human Tenon's fibroblasts

Search Result 2, Processing Time 0.02 seconds

Effect of Bevacizumab on Human Tenon's Fibroblasts Cultured from Primary and Recurrent Pterygium

  • Park, Young Min;Kim, Chi Dae;Lee, Jong Soo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.19 no.4
    • /
    • pp.357-363
    • /
    • 2015
  • The purpose of this study was to compare the inhibitory effect of bevacizumab on human Tenon's fibroblasts (HTFs) cultured from primary and recurrent pterygium. Cultured HTFs were exposed to 2.0, 5.0, 7.5, and 15.0 mg/mL concentration of bevacizumab for 24 hours. The 3-[4,5-dimethylthiazol- 2-yl]-2,5-diphenyl tetrazolium bromide and lactate dehydrogenase leakage assays were then performed to assess fibroblast metabolism and viability. The matrix metalloproteinase (MMP), procollagen type I C terminal propeptide (PIP), and laminin immunoassays were performed to examine extracellular matrix production. Changes in cellular morphology were examined by phase-contrast and transmission electron microscopy. Both metabolic activity and viability of primary and recurrent pterygium HTFs were inhibited by bevacizumab in a dose-dependent manner, especially at concentrations greater than 7.5 mg/mL. Both types of HTFs had significant decreases in MMP-1, PIP, and laminin levels. Distinctly, the inhibitory effect of bevacizumab on MMP-1 level related with collagenase in primary pterygium HTFs was significantly higher than that of recurrent pterygium. Significant changes in cellular density and morphology both occurred at bevacizumab concentrations greater than 7.5 mg/mL. Only primary pterygium HTFs had a reduction in cellular density at a bevacizumab concentration of 5.0 mg/mL. Bevacizumab inhibits primary and recurrent pterygium HTFs in a dose-dependent manner, especially at concentrations greater than 7.5 mg/mL. As the primary HTFs produces larger amounts of MMP-1 compared to recurrent HTFs, significant reduction in MMP-1 level in primary pterygium HTFs after exposure to bevacizumab is likely to be related to the faster cellular density changes in primary pterygium HTFs.

Effects of Valproic Acid on the Survival of Human Tennon's Capsule Fibroblasts (발프로익산이 인체 테논낭 섬유아세포의 생존에 미치는 영향)

  • Lee, See Eun;Kim, Jae Woo
    • Journal of The Korean Ophthalmological Society
    • /
    • v.59 no.11
    • /
    • pp.1056-1061
    • /
    • 2018
  • Purpose: To investigate the effects of valproic acid on the survival of cultured human Tenon's capsule fibroblasts (HTFBs). Methods: Primary cultured HTFBs were exposed to 0, 0.25, 0.5, and 1.0 mM valproic acid with or without 0, 1.0, $2.5{\mu}g/mL$ mitomycin C, and incubated for 5 days. Cell survival was assessed using an MTT (3-[4, 5-dimethylthiazol-2-yl]-2, 5-diphenyltetrazolium bromide) assay and the degree of apoptosis was assessed by flow cytometry using annexin-V/propidium iodide double staining. Results: Valproic acid decreased the survival of HTFBs in a dose-dependent manner, and survival was further decreased by adding mitomycin C to valproic acid. Both valproic acid and mitomycin C induced apoptosis of HTFBs. Valproic acid induced less apoptosis than mitomycin C. Conclusions: Valproic acid decreased the cellular survival of HTFBs and induced apoptosis. The antiproliferative effects of valproic acid were further enhanced by the addition of mitomycin C.