• Title/Summary/Keyword: Human Similarity

Search Result 555, Processing Time 0.029 seconds

A Study on the Relation between Taxonomy of Nominal Expressions and OWL Ontologies (체언표현 개념분류체계와 OWL 온톨로지의 상관관계 연구)

  • Song Do-Gyu
    • Journal of the Korea Society of Computer and Information
    • /
    • v.11 no.2 s.40
    • /
    • pp.93-99
    • /
    • 2006
  • Ontology is an indispensable component in intelligent and semantic processing of knowledge and information, such as in semantic web. Ontology is considered to be constructed generally on the basis of taxonomy of human concepts about the world. However. as human concepts are unstructured and obscure, ontology construction based on the taxonomy of human concepts cannot be realized systematically furthermore automatically. So, we try to do this from the relation among linguistic symbols regarded representing human concepts, in short, words. We show the similarity between taxonomy of human concepts and relation among words. And we propose a methodology to construct and generate automatically ontologies from these relations mon words and a series of algorithm to convert these relations into ontologies. This paper presents the process and concrete application of this methodology.

  • PDF

A Study on Human Recognition Experiments with Handwritten Digit for Machine Recognition of Handwritten Digit (필기 숫자의 기계 인식을 위한 인간의 필기 숫자 인식 실험에 대한 고찰)

  • Yoon, Sung-Soo;Chung, Hyun-Sook;Yi, Kwang-Oh;Lee, Yill-Byeong;Lee, Sang-Ho
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.3
    • /
    • pp.373-380
    • /
    • 2008
  • So far there have been many researches on machine-based recognition of handwritten digit. But we have not yet attained the level of performance that can be satisfactory to men. The dissatisfaction with the performance of machine comes from not only the low accuracy of recognition but also the dissimilarity of the recognition results between man and machine. To reduce the difference of machine from man we first made an experiment with the human recognition of handwritten digits and then inquiry into the way of the human recognition that makes the results of men different from that of machine. We found out the attributes that play an important role in the human recognition process through the analysis of the experimental results like uni- and bi-directional confused pairs of digits, several ones unmixed up with another and the redundancy of mis-recognition, and proposed the approach direction to be able to improve the accuracy of the machine-based recognition, and furthermore the similarity in the recognition results of men and machine on the basis of the found facts above.

A New Face Morphing Method using Texture Feature-based Control Point Selection Algorithm and Parallel Deep Convolutional Neural Network (텍스처 특징 기반 제어점 선택 알고리즘과 병렬 심층 컨볼루션 신경망을 이용한 새로운 얼굴 모핑 방법)

  • Park, Jin Hyeok;Khan, Rafiul Hasan;Lim, Seon-Ja;Lee, Suk-Hwan;Kwon, Ki-Ryong
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.2
    • /
    • pp.176-188
    • /
    • 2022
  • In this paper, we propose a compact method for anthropomorphism that uses Deep Convolutional Neural Networks (DCNN) to detect the similarities between a human face and an animal face. We also apply texture feature-based morphing between them. We propose a basic texture feature-based morphing system for morphing between human faces only. The entire anthropomorphism process starts with the creation of an animal face classifier using a parallel DCNN that determines the most similar animal face to a given human face. The significance of our network is that it contains four sets of convolutional functions that run in parallel, allowing it to extract more features than a linear DCNN network. Our employed texture feature algorithm-based automatic morphing system recognizes the facial features of the human face and takes the Control Points automatically, rather than the traditional human aiding manual morphing system, once the similarity was established. The simulation results show that our suggested DCNN surpasses its competitors with a 92.0% accuracy rate. It also ensures that the most similar animal classes are found, and the texture-based morphing technology automatically completes the morphing process, ensuring a smooth transition from one image to another.

"The Best Doctor is also a Philosopher" Medicine and Philosophy in Galen ("좋은 의사는 또한 철학자이다" 의사-철학자의 모델 갈레노스를 중심으로)

  • Yeo, In-sok
    • Philosophy of Medicine
    • /
    • v.25
    • /
    • pp.3-26
    • /
    • 2018
  • Medicine and philosophy were very closely related in antiquity. The Pre-Socratics were interested in physiological and pathological aspects of human body. Their interests of human body was a part of interests on nature. Plato and Aristotle were fond of proposing their philosophical arguments using medical analogy. Medicine and philosophy were regarded as two disciplines which play a similar role in human being. Ancient philosophers thought that medicine and philosophy were similar on the ground that while philosophy eliminates passion from human soul, medicine eliminates disease from human body. Here, they regarded the similarity of medicine and philosophy only in terms of analogy. More comprehensive and systematic relationship between medicine and philosophy is realized by Galen. He manifestly declared that "The Best Doctor is also a Philosopher", which is also the title of one of his treatise. In this treatise, Galen regarded philosophy is a discipline consisted of physics, logic, and ethics according to the view s of Stoics. As a result, a good doctor for Galen is one who is well versed in physics, logic, and ethics. Furthermore, He regarded Hippocrates as the ideal model of a doctor-philosopher.

Video Compression using Characteristics of Wavelet Coefficients (웨이브렛 계수의 특성을 이용한 비디오 영상 압축)

  • 문종현;방만원
    • Journal of Broadcast Engineering
    • /
    • v.7 no.1
    • /
    • pp.45-54
    • /
    • 2002
  • This paper proposes a video compression algorithm using characteristics of wavelet coefficients. The proposed algorithm can provide lowed bit rate and faster running time while guaranteeing the reconstructed image qualify by the human virtual system. In this approach, each video sequence is decomposed into a pyramid structure of subimages with various resolution to use multiresolution capability of discrete wavelet transform. Then similarities between two neighboring frames are obtained from a low-frequency subband which Includes an important information of an image and motion informations are extracted from the similarity criteria. Four legion selection filters are designed according to the similarity criteria and compression processes are carried out by encoding the coefficients In preservation legions and replacement regions of high-frequency subbands. Region selection filters classify the high-frequency subbands Into preservation regions and replacement regions based on the similarity criteria and the coefficients In replacement regions are replaced by that of a reference frame or reduced to zero according to block-based similarities between a reference frame and successive frames. Encoding is carried out by quantizing and arithmetic encoding the wavelet coefficients in preservation regions and replacement regions separately. A reference frame is updated at the bottom point If the curve of similarity rates looks like concave pattern. Simulation results show that the proposed algorithm provides high compression ratio with proper Image quality. It also outperforms the previous Milton's algorithm in an Image quality, compression ratio and running time, leading to compression ratio less than 0.2bpp. PSNR of 32 dB and running tome of 10ms for a standard video image of size 352${\times}$240 pixels.

Trajectory Clustering in Road Network Environment (도로 네트워크 환경을 위한 궤적 클러스터링)

  • Bak, Ji-Haeng;Won, Jung-Im;Kim, Sang-Wook
    • The KIPS Transactions:PartD
    • /
    • v.16D no.3
    • /
    • pp.317-326
    • /
    • 2009
  • Recently, there have been many research efforts proposed on trajectory information. Most of them mainly focus their attention on those objects moving in Euclidean space. Many real-world applications such as telematics, however, deal with objects that move only over road networks, which are highly restricted for movement. Thus, the existing methods targeting Euclidean space cannot be directly applied to the road network space. This paper proposes a new clustering scheme for a large volume of trajectory information of objects moving over road networks. To the end, we first define a trajectory on a road network as a sequence of road segments a moving object has passed by. Next, we propose a similarity measurement scheme that judges the degree of similarity by considering the total length of matched road segments. Based on such similarity measurement, we propose a new clustering algorithm for trajectories by modifying and adjusting the FastMap and hierarchical clustering schemes. To evaluate the performance of the proposed clustering scheme, we also develop a trajectory generator considering the observation that most objects tend to move from the starting point to the destination point along their shortest path, and perform a variety of experiments using the trajectories thus generated. The performance result shows that our scheme has the accuracy of over 95% in comparison with that judged by human beings.

Developing a New Algorithm for Conversational Agent to Detect Recognition Error and Neologism Meaning: Utilizing Korean Syllable-based Word Similarity (대화형 에이전트 인식오류 및 신조어 탐지를 위한 알고리즘 개발: 한글 음절 분리 기반의 단어 유사도 활용)

  • Jung-Won Lee;Il Im
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.3
    • /
    • pp.267-286
    • /
    • 2023
  • The conversational agents such as AI speakers utilize voice conversation for human-computer interaction. Voice recognition errors often occur in conversational situations. Recognition errors in user utterance records can be categorized into two types. The first type is misrecognition errors, where the agent fails to recognize the user's speech entirely. The second type is misinterpretation errors, where the user's speech is recognized and services are provided, but the interpretation differs from the user's intention. Among these, misinterpretation errors require separate error detection as they are recorded as successful service interactions. In this study, various text separation methods were applied to detect misinterpretation. For each of these text separation methods, the similarity of consecutive speech pairs using word embedding and document embedding techniques, which convert words and documents into vectors. This approach goes beyond simple word-based similarity calculation to explore a new method for detecting misinterpretation errors. The research method involved utilizing real user utterance records to train and develop a detection model by applying patterns of misinterpretation error causes. The results revealed that the most significant analysis result was obtained through initial consonant extraction for detecting misinterpretation errors caused by the use of unregistered neologisms. Through comparison with other separation methods, different error types could be observed. This study has two main implications. First, for misinterpretation errors that are difficult to detect due to lack of recognition, the study proposed diverse text separation methods and found a novel method that improved performance remarkably. Second, if this is applied to conversational agents or voice recognition services requiring neologism detection, patterns of errors occurring from the voice recognition stage can be specified. The study proposed and verified that even if not categorized as errors, services can be provided according to user-desired results.

One-shot multi-speaker text-to-speech using RawNet3 speaker representation (RawNet3를 통해 추출한 화자 특성 기반 원샷 다화자 음성합성 시스템)

  • Sohee Han;Jisub Um;Hoirin Kim
    • Phonetics and Speech Sciences
    • /
    • v.16 no.1
    • /
    • pp.67-76
    • /
    • 2024
  • Recent advances in text-to-speech (TTS) technology have significantly improved the quality of synthesized speech, reaching a level where it can closely imitate natural human speech. Especially, TTS models offering various voice characteristics and personalized speech, are widely utilized in fields such as artificial intelligence (AI) tutors, advertising, and video dubbing. Accordingly, in this paper, we propose a one-shot multi-speaker TTS system that can ensure acoustic diversity and synthesize personalized voice by generating speech using unseen target speakers' utterances. The proposed model integrates a speaker encoder into a TTS model consisting of the FastSpeech2 acoustic model and the HiFi-GAN vocoder. The speaker encoder, based on the pre-trained RawNet3, extracts speaker-specific voice features. Furthermore, the proposed approach not only includes an English one-shot multi-speaker TTS but also introduces a Korean one-shot multi-speaker TTS. We evaluate naturalness and speaker similarity of the generated speech using objective and subjective metrics. In the subjective evaluation, the proposed Korean one-shot multi-speaker TTS obtained naturalness mean opinion score (NMOS) of 3.36 and similarity MOS (SMOS) of 3.16. The objective evaluation of the proposed English and Korean one-shot multi-speaker TTS showed a prediction MOS (P-MOS) of 2.54 and 3.74, respectively. These results indicate that the performance of our proposed model is improved over the baseline models in terms of both naturalness and speaker similarity.

Spectrum Analysis and Detection of Ships Based on Aerial Hyperspectral Remote Sensing Experiments (항공 초분광 원격탐사 실험 기반 선박 스펙트럼 분석 및 탐지)

  • Jae-Jin Park;Kyung-Ae Park;Tae-Sung Kim;Moonjin Lee
    • Journal of the Korean earth science society
    • /
    • v.45 no.3
    • /
    • pp.214-223
    • /
    • 2024
  • The recent increase in maritime traffic and coastal leisure activities has led to a rise in various marine accidents. These incidents not only result in damage to human life and property but also pose a significant risk of marine pollution involving oil and hazardous and noxious substances (HNS) spills. Therefore, effective ship monitoring is crucial for preparing and for responding to marine accidents. This study conducted an aerial experiment utilizing hyperspectral remote sensing to develop a maritime ship monitoring system. Hyperspectral aerial measurements were carried out around Gungpyeong Port in the western coastal region of the Korean Peninsula, and spectral libraries were constructed for various ship decks. The spectral correlation similarity (SCS) technique was employed for ship detection, analyzing the spatial similarity distribution between hyperspectral images and ship spectra. As a result, 15 ships were detected in the hyperspectral images. The color of each ship's deck was classified based on the highest spectral similarity. The detected ships were verified by matching them with high-resolution digital mapping camera (DMC) images. This foundational study on the application of aerial hyperspectral sensors for maritime ship detection demonstrates their potential role in future remote sensing-based ship monitoring systems.

Elaborate Image Quality Assessment with a Novel Luminance Adaptation Effect Model (새로운 광적응 효과 모델을 이용한 정교한 영상 화질 측정)

  • Bae, Sung-Ho;Kim, Munchurl
    • Journal of Broadcast Engineering
    • /
    • v.20 no.6
    • /
    • pp.818-826
    • /
    • 2015
  • Recently, objective image quality assessment (IQA) methods that elaborately reflect the visual quality perception characteristics of human visual system (HVS) have actively been studied. Among those characteristics of HVS, luminance adaptation (LA) effect, indicating that HVS has different sensitivities depending on background luminance values to distortions, has widely been reflected into many existing IQA methods via Weber's law model. In this paper, we firstly reveal that the LA effect based on Weber's law model has inaccurately been reflected into the conventional IQA methods. To solve this problem, we firstly derive a new LA effect-based Local weight Function (LALF) that can elaborately reflect LA effect into IQA methods. We validate the effectiveness of our proposed LALF by applying LALF into SSIM (Structural SIMilarity) and PSNR methods. Experimental results show that the SSIM based on LALF yields remarkable performance improvement of 5% points compared to the original SSIM in terms of Spear rank order correlation coefficient between estimated visual quality values and measured subjective visual quality scores. Moreover, the PSNR (Peak to Signal Noise Ratio) based on LALF yields performance improvement of 2.5% points compared to the original PSNR.