• 제목/요약/키워드: Human Signals

검색결과 865건 처리시간 0.022초

제스처와 EEG 신호를 이용한 감정인식 방법 (Emotion Recognition Method using Gestures and EEG Signals)

  • 김호덕;정태민;양현창;심귀보
    • 제어로봇시스템학회논문지
    • /
    • 제13권9호
    • /
    • pp.832-837
    • /
    • 2007
  • Electroencephalographic(EEG) is used to record activities of human brain in the area of psychology for many years. As technology develope, neural basis of functional areas of emotion processing is revealed gradually. So we measure fundamental areas of human brain that controls emotion of human by using EEG. Hands gestures such as shaking and head gesture such as nodding are often used as human body languages for communication with each other, and their recognition is important that it is a useful communication medium between human and computers. Research methods about gesture recognition are used of computer vision. Many researchers study Emotion Recognition method which uses one of EEG signals and Gestures in the existing research. In this paper, we use together EEG signals and Gestures for Emotion Recognition of human. And we select the driver emotion as a specific target. The experimental result shows that using of both EEG signals and gestures gets high recognition rates better than using EEG signals or gestures. Both EEG signals and gestures use Interactive Feature Selection(IFS) for the feature selection whose method is based on a reinforcement learning.

Classification of Three Different Emotion by Physiological Parameters

  • Jang, Eun-Hye;Park, Byoung-Jun;Kim, Sang-Hyeob;Sohn, Jin-Hun
    • 대한인간공학회지
    • /
    • 제31권2호
    • /
    • pp.271-279
    • /
    • 2012
  • Objective: This study classified three different emotional states(boredom, pain, and surprise) using physiological signals. Background: Emotion recognition studies have tried to recognize human emotion by using physiological signals. It is important for emotion recognition to apply on human-computer interaction system for emotion detection. Method: 122 college students participated in this experiment. Three different emotional stimuli were presented to participants and physiological signals, i.e., EDA(Electrodermal Activity), SKT(Skin Temperature), PPG(Photoplethysmogram), and ECG (Electrocardiogram) were measured for 1 minute as baseline and for 1~1.5 minutes during emotional state. The obtained signals were analyzed for 30 seconds from the baseline and the emotional state and 27 features were extracted from these signals. Statistical analysis for emotion classification were done by DFA(discriminant function analysis) (SPSS 15.0) by using the difference values subtracting baseline values from the emotional state. Results: The result showed that physiological responses during emotional states were significantly differed as compared to during baseline. Also, an accuracy rate of emotion classification was 84.7%. Conclusion: Our study have identified that emotions were classified by various physiological signals. However, future study is needed to obtain additional signals from other modalities such as facial expression, face temperature, or voice to improve classification rate and to examine the stability and reliability of this result compare with accuracy of emotion classification using other algorithms. Application: This could help emotion recognition studies lead to better chance to recognize various human emotions by using physiological signals as well as is able to be applied on human-computer interaction system for emotion recognition. Also, it can be useful in developing an emotion theory, or profiling emotion-specific physiological responses as well as establishing the basis for emotion recognition system in human-computer interaction.

Emotion Recognition Method for Driver Services

  • Kim, Ho-Duck;Sim, Kwee-Bo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제7권4호
    • /
    • pp.256-261
    • /
    • 2007
  • Electroencephalographic(EEG) is used to record activities of human brain in the area of psychology for many years. As technology developed, neural basis of functional areas of emotion processing is revealed gradually. So we measure fundamental areas of human brain that controls emotion of human by using EEG. Hands gestures such as shaking and head gesture such as nodding are often used as human body languages for communication with each other, and their recognition is important that it is a useful communication medium between human and computers. Research methods about gesture recognition are used of computer vision. Many researchers study Emotion Recognition method which uses one of EEG signals and Gestures in the existing research. In this paper, we use together EEG signals and Gestures for Emotion Recognition of human. And we select the driver emotion as a specific target. The experimental result shows that using of both EEG signals and gestures gets high recognition rates better than using EEG signals or gestures. Both EEG signals and gestures use Interactive Feature Selection(IFS) for the feature selection whose method is based on the reinforcement learning.

수직 방향 진동에 대한 인체의 동적 응답 특성에 관한 연구 (A Study on Dynamic Response Characteristics of Seating Human Body Exposed to Vertical Vibration)

  • 송수연;채창국;김광준;장한기;김승한
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집A
    • /
    • pp.522-528
    • /
    • 2000
  • Dynamic characteristics of seated human body were investigated by measuring apparent masses of eight different seating subjects exposed to vertical vibration. Two types of vibration signals - one is random signals over 1 to 30Hz having flat spectral density and the other is signals measured on seat rail in passenger car under driving conditions - were employed. It was found that the apparent masses are highly dependent on vibration level rather than type of the vibration signals. Based on the apparent mass measurements, a mathematical model of the human body in seating posture was developed by using genetic algorithm. Three-degree-of-freedom model was satisfactory in describing apparent mass of seated human body.

  • PDF

진동감지를 이용한 사용자 걸음걸이 인식 (Estimating Human Walking Pace and Direction Using Vibration Signals)

  • 정은석;김대은
    • 제어로봇시스템학회논문지
    • /
    • 제20권5호
    • /
    • pp.481-485
    • /
    • 2014
  • In service robots, a number of human movements are analyzed using a variety of sensors. Vibration signals from walking movements of a human provide useful information about the distance and the movement direction of the human. In this paper, we measure the intensity of vibrations and detect both human walking pace and direction. In our experiments, vibration signals detected by microphone sensors provide good estimation of the distance and direction of a human movement. This can be applied to HRI (Human-Robot Interaction) technology.

사용자 적응 인터페이스를 사용한 이동로봇의 원격제어 (Remote Control of a Mobile Robot Using Human Adaptive Interface)

  • 황창순;이상룡;박근영;이춘영
    • 제어로봇시스템학회논문지
    • /
    • 제13권8호
    • /
    • pp.777-782
    • /
    • 2007
  • Human Robot Interaction(HRI) through a haptic interface plays an important role in controlling robot systems remotely. The augmented usage of bio-signals in the haptic interface is an emerging research area. To consider operator's state in HRI, we used bio-signals such as ECG and blood pressure in our proposed force reflection interface. The variation of operator's state is checked from the information processing of bio-signals. The statistical standard variation in the R-R intervals and blood pressure were used to adaptively adjust force reflection which is generated from environmental condition. To change the pattern of force reflection according to the state of the human operator is our main idea. A set of experiments show the promising results on our concepts of human adaptive interface.

EEG 신호의 Power Spectrum을 이용한 사람의 감정인식 방법 : Bayesian Networks와 상대 Power values 응용 (Human Emotion Recognition using Power Spectrum of EEG Signals : Application of Bayesian Networks and Relative Power Values)

  • 염홍기;한철훈;김호덕;심귀보
    • 한국지능시스템학회논문지
    • /
    • 제18권2호
    • /
    • pp.251-256
    • /
    • 2008
  • 많은 연구자들은 여러 개의 채널을 가진 Electroencephalogram(EEG) 신호를 기반으로 한 사람의 감정인식을 위해 두뇌와 컴퓨터의 인터페이스에 관한 연구를 하고 있다. EEG 신호를 이용한 연구들은 주로 의학 분야와 심리학의 영역에서 간질이나 발작 등을 알아내고 거짓말 탐지기로써의 역할로 많이 사용되어져 왔다. 최근에는 사람의 두뇌와 컴퓨터 간의 인터페이스에 관한 연구들이 뇌파를 이용한 로봇의 제어하거나 게임을 하는 등의 여러 가지 공학적인 접근으로써 많은 연구가 진행되고 있다. 특히, EEG 신호를 통해서 두뇌를 연구하는 분야에서 EEG 신호의 잡음을 제거해서 보다 정확한 신호를 추출하는 연구에도 많이 중점을 두고 있다. 본 논문에서는 사람의 감정에 따른 EEG 신호를 측정하고 측정된 EEG 신호를 5개 부분의 주파수 영역으로 분류하였다. 영역별로 분류된 EEG 신호들은 전체영역에 대한 상대적인 비율의 값으로 계산하게 된다. 그 값들은 Bayesian Networks를 통해서 현재 어떠한 감정을 나타내는지 확률 값으로 나타낸다. 그 결과 값에 따라 사람의 감정은 아바타로 표현하게 된다.

생체 신호와 몸짓을 이용한 감정인식 방법 (Emotion Recognition Method using Physiological Signals and Gestures)

  • 김호덕;양현창;심귀보
    • 한국지능시스템학회논문지
    • /
    • 제17권3호
    • /
    • pp.322-327
    • /
    • 2007
  • 심리학 분야의 연구자들은 Electroencephalographic(EEG)을 오래전부터 인간 두뇌의 활동을 측정 기록하는데 사용하였다. 과학이 발달함에 따라 점차적으로 인간의 두뇌에서 감정을 조절하는 기본적인 영역들이 밝혀지고 있다. 그래서 인간의 감정을 조절하는 인간의 두뇌 활동 영역들을 EEG를 이용하여 측정하였다. 손짓이나 고개의 움직임은 사람들 사이에 대화를 위한 인간의 몸 언어로 사용된다. 그리고 그것들의 인식은 컴퓨터와 인간 사이에 유용한 회화수단으로 매우 중요하다. 몸짓에 관한 연구들은 주로 영상을 통한 인식 방법이 주를 이루고 있다. 많은 연구자들의 기존 연구에서는 생체신호나 몸짓중 한 가지만을 이용하여 감정인식 방법 연구를 하였다. 본 논문에서는 EEG 신호와 몸짓을 같이 사용해서 사람의 감정을 인식하였다. 그리고 인식의 대상자를 운전자라는 특정 대상자를 설정하고 실험을 하였다. 실험 결과 생체신호와 몸짓을 같이 사용한 실점의 인식률이 둘 중 한 가지만을 사용한 것보다 높은 인식률을 보였다. 생체신호와 몸짓들의 특징 신호들은 강화학습의 개념을 이용한 IFS(Interactive Feature Selection)를 이용하여 특징 선택을 하였다.

의수제어를 위한 인체학습시스템에 관한 연구 (A Study on Human Training System for Prosthetic Arm Control)

  • 장영건;홍승홍
    • 대한의용생체공학회:의공학회지
    • /
    • 제15권4호
    • /
    • pp.465-474
    • /
    • 1994
  • This study is concerned with a method which helps human to generate EMG signals accurately and consistently to make reliable design samples of function discriminator for prosthetic arm control. We intend to ensure a signal accuracy and consistency by training human as a signal generation source. For the purposes, we construct a human training system using a digital computer, which generates visual graphes to compare real target motion trajectory with the desired one, to observe EMG signals and their features. To evaluate the effect which affects a feature variance and a feature separability between motion classes by the human training system, we select 4 features such as integral absolute value, zero crossing counts, AR coefficients and LPC cepstrum coefficients. We perform a experiment four times during 2 months. The experimental results show that the hu- man training system is effective for accurate and consistent EMG signal generation and reduction of a feature variance, but is not correlated for a feature separability, The cepstrum coefficient is the most preferable among the used features for reduction of variance, class separability and robustness to a time varing property of EMG signals.

  • PDF

청각 감성의 생리적 신호변화에 대한 연구

  • 황민철;김지은;김철중
    • 대한인간공학회:학술대회논문집
    • /
    • 대한인간공학회 1996년도 춘계학술대회논문집
    • /
    • pp.259-263
    • /
    • 1996
  • Psychological action is physiological response of outernal stimulus. Physiological response is accompanied b physiological signals which are EEG, EMG, GSR, ECG, BP, and tec. Physiological signals are recently studied for determination of human phychological state. Psychological activity causes electric potential of brain. Physiological signal is considered as measurement of human psychological state. Aditory sensibility which is one of the sense of human may determine differences between positive and negative feeling. EEG and GSR variation with auditory quality of stimulus can be define human negative and positive mental state. This study is to characterize parameters which can determine negative and positive psycholigical state of human.

  • PDF