• Title/Summary/Keyword: Human Response to Vibration

Search Result 102, Processing Time 0.031 seconds

A system of multiple controllers for attenuating the dynamic response of multimode floor structures to human walking

  • Battista, Ronaldo C.;Varela, Wendell D.
    • Smart Structures and Systems
    • /
    • v.23 no.5
    • /
    • pp.467-478
    • /
    • 2019
  • Composite floor structures formed by continuous slab panels may be susceptible to excessive vibrations, even when properly designed in terms of ultimate limit state criteria. This is due to the inherent vibration characteristics of continuous floor slabs composed by precast orthotropic reinforced concrete panels supported by steel beams. These floor structures display close spaced multimode vibration frequencies and this dynamic characteristic results in a non-trivial vibration problem. Structural stiffening and/or insertion of struts between floors are the usual tentative solution applied to existing vibrating floor structures. Such structural alterations are in general expensive and unsuitable. In this paper, this vibration problem is analyzed on the basis of results obtained from experimental measurements in typical composite floors and their theoretical counterpart obtained with computational modeling simulations. A passive control system composed by multiple synchronized dynamic attenuators (MSDA) was designed and installed in these floor structures and its efficiency was evaluated both experimentally and through numerical simulations. The results obtained from experimental tests of the continuous slab panels under human walking dynamic action proved the effectiveness of this control system in reducing vibrations amplitudes.

Comparison of Human Responses to Transportation Noise in Monaural and Binaural Hearing, Part II: Annoyance (교통소음의 모노럴과 바이노럴 청감 비교 연구 II: 성가심)

  • Kim, Jaehwan;Lim, Chang-Woo;Hong, Jiyoung;Jeong, Wontae;Cheung, Wansup;Lee, Soogab
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.12
    • /
    • pp.1279-1286
    • /
    • 2004
  • This paper continues companion paper, part I : measurement and analysis. As shown in companion Paper, information and energy in monaural signal is quite different from that of binaural signal. In this paper, difference between monaural and binaural signal of transportation noise are investigated in subjective response test. We executed hearing screening test before giving a subject response test and excluded subjects who had physical hearing loss. An annoyance response test was conducted using headphone to avoid cross-talk effect in binaural testing. Percentage of highly annoyed under binaural signal reproduction is higher than percentage of highly annoyed under monaural signal reproduction. Result implies binaural reproduction technique is proper for a study of human response to short-term noise exposure in a headphone simulated-environment.

Six-axis Biodynamic Response to Vertical Whole-body Vibration (수직방향 진동에 대한 인체의 6축 방향 반응특성분석)

  • Jeon, Gyeoung-Jin;Kim, Min-Seok;Ahn, Se-Jin;Jeong, Weui-Bong;Yoo, Wan-Suk
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.218-223
    • /
    • 2011
  • Seated human subjects have been exposed to vertical vibration so as to investigate six-axis biodynamic response. Sixteen males were exposed to random vertical vibration in the frequency range(3~40Hz) at one vibration magnitude(0.224m/$s^2$ r.m.s.). Forces were measured in the vertical, fore-and-aft, lateral, roll, pitch and yaw direction on the seat. The median of cross-axis apparent mass magnitude in the fore-and-aft direction could reach up to 20% of the apparent mass magnitude at resonance frequency. And the median of apparent eccentric mass magnitude in the roll direction could reach up to 15% of the apparent eccentric mass magnitude in the pitch direction at resonance frequency. But cross-axis apparent mass in the lateral direction and apparent eccentric mass in the yaw direction showed very small.

  • PDF

Wind-induced vibration control of a 200 m-high tower-supported steel stack

  • Susuki, Tatsuya;Hanada, Naoya;Homma, Shin;Maeda, Junji
    • Wind and Structures
    • /
    • v.9 no.5
    • /
    • pp.345-356
    • /
    • 2006
  • It is well known that cylinder steel stacks are heavily impacted by vortex-induced vibration. However, the wind-induced vibration behaviors of tower-supported steel stacks are not clarified due to a lack of observation. We studied a stack's response to strong winds over a long period of time by observing the extreme wind-induced vibration of a 200 m-high tower-supported steel stack. This experiment aimed to identify the wind-induced vibration properties of a tower-supported steel stack and assess the validity of the vibration control method used in the experiment. Results revealed a trend in wind-induced vibration behavior. In turn, an effective measure for controlling such vibration was defined by means of increasing the structural damping ratio due to the effects of the tuned mass damper to dramatically decrease the vortex-induced vibration of the stack.

Human Response to Idle Vibration of Passenger Vehicle Related to Seating Posture (승용차량의 아이들 진동을 고려한 착석자세에 따른 인체의 반응특성 분석)

  • Jeon, Gyeoung-Jin;Kim, Min-Seok;Ahn, Se-Jin;Jeong, Weui-Bong;Yoo, Wan-Suk
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.12
    • /
    • pp.1121-1127
    • /
    • 2010
  • Human characteristic responding to idle vibration on passenger vehicle was studied to find if affected by seating posture of passenger. When twelve male subjects are exposed to moderate vertical vibration of 0.224 $m/s^2$ r.m.s. at frequency range from 3 Hz to 40 Hz, it was found that seating posture significantly affects to biodynamical characteristics, apparent mass and apparent eccentric mass, at most range of idle vibration frequency(20~40 Hz). The supported thigh contact on rigid seat showed bigger values in the two biodynamical characteristics than the average thigh contact. The bigger apparent mass and apparent eccentric mass in the seating posture of the supported thigh contact can be assumed more strengthened muscle at the frequency range.

Investigation of Transmission Characteristics of Tractor Seat Vibrations Using Vibration Path Analysis Method (VPA를 이용한 트랙터 좌석 진동의 전달 특성 구명)

  • 이주완;김경욱
    • Journal of Biosystems Engineering
    • /
    • v.26 no.3
    • /
    • pp.237-244
    • /
    • 2001
  • This work was intended to investigate the effect of vibration transmission paths on the ride vibration of tractor during the rotavating and transporting operations by applying the vibration path analysis method. Accelerations at the cab mounts were measured during the rotavating and transporting operations. Ride vibrations at the sear were than calculated using the measured accelerations at the cab mounts, and the frequency response functions and inertances between the seat and cab mounts, which were derived experimentally by the impact hammer test in static condition. The human sensitivity to vibration frequency was also taken into consideration for the calculation of ride vibrations at the 1/3 octave center frequencies in the frequency domain. Vibrations transmitted through rear cab mounts affected more significantly the ride vibration of tractor. The peak accelerations at the seat occurred at the frequencies of the engine and crank speed, and the frequency induced by tire lugs on the road transportation. It was found that the rear cab mounts should be improved in order to reduce the ride vibrations more effectively.

  • PDF

Vibration Analysis of Building Floor Subjected to Walking Loads (보행하중을 받는 건축물 바닥판의 진동해석)

  • 김기철;이동근
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.04a
    • /
    • pp.414-421
    • /
    • 2001
  • Recently, the damping effect of building structures are greatly reduced because the use of non-structures members as like curtain wall are decreased and large open space are in need for the service of buildings. Assembly and office buildings with a lower natural frequency have a higher possibility of experiencing excessive vibration induced by human activities as like jumping, running and walking. These excessive vibration make the occupants uncomfortable and the serviceability deterioration. The common method of application of walking loads for the vibration analysis of structures subjected to walking loads is to inflict a series unit walking load and a periodic function at a node. But this method could not consider the moving effect of walking. In this study, natural frequency and damping ratio of plate structure are evaluated by heel drop tests. And new application of equivalent walking loads are introduced for vibration analysis of real slab system subjected to walking loads. The response obtained from the numerical analysis are compared well to the results measured by experimental tests. It is possible to efficiently analyze the vibration of floor which is subjected to walking loads by applying equivalent walking loads.

  • PDF

DYNAMICS OF HUMAN BODY RESPONDING TO SHOCK-TYPE VERTICAL WHOLE-BODY VIBRATION (수직방향 충격 진동에 대한 인체동역학적 특성)

  • Ahn, Se-Jin;Yoon, Seong-Ho;Chang, Ik-Soon;Kim, Joong-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.546-550
    • /
    • 2008
  • Impulsive excitation on vehicles produces shock-type vibration on the seat, usually which has major frequencies and damping ratios dependent on the characteristics of the suspension, the tire, the seat cushion and so on. The response of single degree of freedom model to a half-sine force input was considered as simple shock-type vibration signal. The quasi-apparent-mass for fifteen subjects was obtained with the shock-type vibration generated on the rigid seat, so its nonlinearity was found over 6.3 Hz according to the difference of magnitude of the shocks.

  • PDF

A Study ef Biomechanical Response in Human Body during Whole-Body Vibration through Musculoskeletal Model Development (전신 진동운동기 사용시 인체에 대한 생체역학적 특성 분석을 위한 가상 골격계 모델의 개발 및 검증)

  • Choi, Hyun-Ho;Lim, Do-Hyung;Hwang, Seon-Hong;Kim, Young-Ho;Kim, Han-Sung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.5
    • /
    • pp.155-163
    • /
    • 2008
  • This study investigated biomechanical response through the 3-dimensional virtual skeletal model developed and validated. Ten male subjects in standing posture were exposed to whole body vibrations and measured acceleration on anatomical of interest (head, $7^{th}$ cervical, $10^{th}$ thoracic, $4^{th}$ lumbar, knee joint and bottom of the vibrator). Three dimensional virtual skeletal model and vibration machine were created by using BRG LifeMOD and MSC.ADAMS. The results of forward dynamic analysis were compared with results of experiment. The results showed that the accuracy of developed model was $73.2{\pm}19.2%$ for all conditions.

Evaluation and Development in Sound Design a Matter of Combining Physical and Perception Data in Noise and Vibration

  • Schulte-Fortkamp, Brigitte
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2010.05a
    • /
    • pp.43-43
    • /
    • 2010
  • Presently, there is the dilemma of uncertainty with respect to the evaluation of sound and vibration based on the fact that there is obviously no agreement upon appropriate methods to measure the "truth" concerning the acceptance of sound and vibration. To evaluate properly physical and perception data in sound and vibration it is necessary to implement new methods and innovative approaches to understand the input of human response in sound design. Fortunately, an elaborate dialogue of the usefulness and applicability of those approaches is in progress. Moreover, the need of using and combining perception and physical data in order to comprehend the process of human perception and evaluation sufficiently is widely accepted. However, still the question remains how the goal of an adequate combination can be achieved. Clearly, themultidimensional human perception cannot be easily reduced to singular numbers. Moreover, factors, among others the meaning of the sound, the composition of the diverse sound sources, the listener's attitude, expectations and experiences, are significant parameters which have to be considered to comprehend the different perceptions and evaluations with regard to specific stimuli. Taking under consideration the physical, psychological, and cognitive dimensions as well as the integration of aspects of design require partially various new approaches. While binaural measurement and analysis technologies and psycho-acoustics are well established as they are proved to be valuable auxiliary tools; it has not been achieved to develop generally acceptable measurement units concerning sound quality. Consequently, there is a need for new approaches and methods which make it possible to comprehend sufficiently the process of perception and evaluation. Going with people's mind will be one solution for the future; thisconcept will be introduced based on the development in sound design.

  • PDF