• 제목/요약/키워드: Human Neurons

검색결과 151건 처리시간 0.029초

Adaptive V1-MT model for motion perception

  • Li, Shuai;Fan, Xiaoguang;Xu, Yuelei;Huang, Jinke
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권1호
    • /
    • pp.371-384
    • /
    • 2019
  • Motion perception has been tremendously improved in neuroscience and computer vision. The baseline motion perception model is mediated by the dorsal visual pathway involving the cortex areas the primary visual cortex (V1) and the middle temporal (V5 or MT) visual area. However, few works have been done on the extension of neural models to improve the efficacy and robustness of motion perception of real sequences. To overcome shortcomings in situations, such as varying illumination and large displacement, an adaptive V1-MT motion perception (Ad-V1MTMP) algorithm enriched to deal with real sequences is proposed and analyzed. First, the total variation semi-norm model based on Gabor functions (TV-Gabor) for structure-texture decomposition is performed to manage the illumination and color changes. And then, we study the impact of image local context, which is processed in extra-striate visual areas II (V2), on spatial motion integration by MT neurons, and propose a V1-V2 method to extract the image contrast information at a given location. Furthermore, we take feedback inputs from V2 into account during the polling stage. To use the algorithm on natural scenes, finally, multi-scale approach has been used to handle the frequency range, and adaptive pyramidal decomposition and decomposed spatio-temporal filters have been used to diminish computational cost. Theoretical analysis and experimental results suggest the new Ad-V1MTMP algorithm which mimics human primary motion pathway has universal, effective and robust performance.

Effects of δ-Catenin on APP by Its Interaction with Presenilin-1

  • Dai, Weiye;Ryu, Taeyong;Kim, Hangun;Jin, Yun Hye;Cho, Young-Chang;Kim, Kwonseop
    • Molecules and Cells
    • /
    • 제42권1호
    • /
    • pp.36-44
    • /
    • 2019
  • Alzheimer's disease (AD) is the most frequent age-related human neurological disorder. The characteristics of AD include senile plaques, neurofibrillary tangles, and loss of synapses and neurons in the brain. ${\beta}-Amyloid$ ($A{\beta}$) peptide is the predominant proteinaceous component of senile plaques. The amyloid hypothesis states that $A{\beta}$ initiates the cascade of events that result in AD. Amyloid precursor protein (APP) processing plays an important role in $A{\beta}$ production, which initiates synaptic and neuronal damage. ${\delta}-Catenin$ is known to be bound to presenilin-1 (PS-1), which is the main component of the ${\gamma}-secretase$ complex that regulates APP cleavage. Because PS-1 interacts with both APP and ${\delta}-catenin$, it is worth studying their interactive mechanism and/or effects on each other. Our immunoprecipitation data showed that there was no physical association between ${\delta}-catenin$ and APP. However, we observed that ${\delta}-catenin$ could reduce the binding between PS-1 and APP, thus decreasing the PS-1 mediated APP processing activity. Furthermore, ${\delta}-catenin$ reduced PS-1-mediated stabilization of APP. The results suggest that ${\delta}-catenin$ can influence the APP processing and its level by interacting with PS-1, which may eventually play a protective role in the degeneration of an Alzheimer's disease patient.

Increased expression of vascular endothelial growth factor-C and vascular endothelial growth factor receptor-3 after pilocarpine-induced status epilepticus in mice

  • Cho, Kyung-Ok;Kim, Joo Youn;Jeong, Kyoung Hoon;Lee, Mun-Yong;Kim, Seong Yun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제23권4호
    • /
    • pp.281-289
    • /
    • 2019
  • Vascular endothelial growth factor (VEGF)-C and its receptor, vascular endothelial growth factor receptor (VEGFR)-3, are responsible for lymphangiogenesis in both embryos and adults. In epilepsy, the expression of VEGF-C and VEGFR-3 was significantly upregulated in the human brains affected with temporal lobe epilepsy. Moreover, pharmacologic inhibition of VEGF receptors after acute seizures could suppress the generation of spontaneous recurrent seizures, suggesting a critical role of VEGF-related signaling in epilepsy. Therefore, in the present study, the spatiotemporal expression of VEGF-C and VEGFR-3 against pilocarpine-induced status epilepticus (SE) was investigated in C57BL/6N mice using immunohistochemistry. At 1 day after SE, hippocampal astrocytes and microglia were activated. Pyramidal neuronal death was observed at 4 days after SE. In the subpyramidal zone, VEGF-C expression gradually increased and peaked at 7 days after SE, while VEGFR-3 was significantly upregulated at 4 days after SE and began to decrease at 7 days after SE. Most VEGF-C/VEGFR-3-expressing cells were pyramidal neurons, but VEGF-C was also observed in some astrocytes in sham-manipulated animals. However, at 4 days and 7 days after SE, both VEGFR-3 and VEGF-C immunoreactivities were observed mainly in astrocytes and in some microglia of the stratum radiatum and lacunosum-moleculare of the hippocampus, respectively. These data indicate that VEGF-C and VEGFR-3 can be upregulated in hippocampal astrocytes and microglia after pilocarpine-induced SE, providing basic information about VEGF-C and VEGFR-3 expression patterns following acute seizures.

Prophylactic role of Korean Red Ginseng in astrocytic mitochondrial biogenesis through HIF-1α

  • Park, Jinhong;Lee, Minjae;Kim, Minsu;Moon, Sunhong;Kim, Seunghee;Kim, Sueun;Koh, Seong-Ho;Kim, Young-Myeong;Choi, Yoon Kyung
    • Journal of Ginseng Research
    • /
    • 제46권3호
    • /
    • pp.408-417
    • /
    • 2022
  • Background: Korean Red Ginseng extract (KRGE) has been used as a health supplement and herbal medicine. Astrocytes are one of the key cells in the central nervous system (CNS) and have bioenergetic potential as they stimulate mitochondrial biogenesis. They play a critical role in connecting the brain vasculature and nerves in the CNS. Methods: Brain samples from KRGE-administered mice were tested using immunohistochemistry. Treatment of human brain astrocytes with KRGE was subjected to assays such as proliferation, cytotoxicity, Mitotracker, ATP production, and O2 consumption rate as well as western blotting to demonstrate the expression of proteins related to mitochondria functions. The expression of hypoxia-inducible factor-1α (HIF-1α) was diminished utilizing siRNA transfection. Results: Brain samples from KRGE-administered mice harbored an increased number of GFAP-expressing astrocytes. KRGE triggered the proliferation of astrocytes in vitro. Enhanced mitochondrial biogenesis induced by KRGE was detected using Mitotracker staining, ATP production, and O2 consumption rate assays. The expression of proteins related to mitochondrial electron transport was increased in KRGE-treated astrocytes. These effects were blocked by HIF-1α knockdown. The factors secreted from KRGE-treated astrocytes were determined, revealing the expression of various cytokines and growth factors, especially those related to angiogenesis and neurogenesis. KRGE-treated astrocyte conditioned media enhanced the differentiation of adult neural stem cells into mature neurons, increasing the migration of endothelial cells, and these effects were reduced in the background of HIF-1α knockdown. Conclusion: Our findings suggest that KRGE exhibits prophylactic potential by stimulating astrocyte mitochondrial biogenesis through HIF-1α, resulting in improved neurovascular function.

Preventive effects of nano-graphene oxide against Parkinson's disease via reactive oxygen species scavenging and anti-inflammation

  • Hee-Yeong Kim;Hyung Ho Yoon;Hanyu Seong;Dong Kwang Seo;Soon Won Choi;Jaechul Ryu;Kyung-Sun Kang;Sang Ryong Jeon
    • BMB Reports
    • /
    • 제56권3호
    • /
    • pp.202-207
    • /
    • 2023
  • We investigated the neuroprotective effects of deca nano-graphene oxide (daNGO) against reactive oxygen species (ROS) and inflammation in the human neuroblastoma cell line SH-SY5Y and in the 6-hydroxydopamine (6-OHDA) induced Parkinsonian rat model. An MTT assay was performed to measure cell viability in vitro in the presence of 6-OHDA and/or daNGO. The intracellular ROS level was quantified using 2',7'-dichlorofluorescein diacetate. daNGO showed neuroprotective effects against 6-OHDA-induced toxicity and also displayed ROS scavenging properties. We then tested the protective effects of daNGO against 6-OHDA induced toxicity in a rat model. Stepping tests showed that the akinesia symptoms were improved in the daNGO group compared to the control group. Moreover, in an apomorphine-induced rotation test, the number of net contralateral rotations was decreased in the daNGO group compared to the control group. By immunofluorescent staining, the animals in the daNGO group had more tyrosine hydroxylase-positive cells than the controls. By anti-Iba1 staining, 6-OHDA induced microglial activation showed a significantly decrease in the daNGO group, indicating that the neuroprotective effects of graphene resulted from anti-inflammation. In conclusion, nano-graphene oxide has neuroprotective effects against the neurotoxin induced by 6-OHDA on dopaminergic neurons.

Reduction of fetuin-A levels contributes to impairment of Purkinje cells in cerebella of patients with Parkinson's disease

  • Sunmi Yoon;Napissara Boonpraman;Chae Young Kim;Jong-Seok Moon;Sun Shin Yi
    • BMB Reports
    • /
    • 제56권5호
    • /
    • pp.308-313
    • /
    • 2023
  • Phenotypic features such as ataxia and loss of motor function, which are characteristics of Parkinson's disease (PD), are expected to be very closely related to cerebellum function. However, few studies have reported the function of the cerebellum. Since the cerebellum, like the cerebrum, is known to undergo functional and morphological changes due to neuroinflammatory processes, elucidating key functional factors that regulate neuroinflammation in the cerebellum can be a beneficial therapeutic approach. Therefore, we employed PD patients and MPTP-induced PD mouse model to find cytokines involved in cerebellar neuroinflammation in PD and to examine changes in cell function by regulating related genes. Along with the establishment of a PD mouse model, abnormal shapes such as arrangement and number of Purkinje cells in the cerebellum were confirmed based on histological finding, consistent with those of cerebellums of PD patients. As a result of proteome profiling for neuroinflammation using PD mouse cerebellar tissues, fetuin-A, a type of cytokine, was found to be significantly reduced in Purkinje cells. To further elucidate the function of fetuin-A, neurons isolated from cerebellums of embryos (E18) were treated with fetuin-A siRNA. We uncovered that not only the population of neuronal cells, but also their morphological appearances were significantly different. In this study, we found a functional gene called fetuin-A in the PD model's cerebellum, which was closely related to the role of cerebellar Purkinje cells of mouse and human PD. In conclusion, morphological abnormalities of Purkinje cells in PD mice and patients have a close relationship with a decrease of fetuin-A, suggesting that diagnosis and treatment of cerebellar functions of PD patients might be possible through regulation of fetuin-A.

Ginsenosides Decrease β-Amyloid Production via Potentiating Capacitative Calcium Entry

  • Yoon Young Cho;Jeong Hill Park;Jung Hee Lee;Sungkwon Chung
    • Biomolecules & Therapeutics
    • /
    • 제32권3호
    • /
    • pp.301-308
    • /
    • 2024
  • Alzheimer's disease (AD) is a progressive and irreversible neurodegenerative disorder characterized by extracellular amyloid plaques composed of amyloid β-peptide (Aβ). Studies have indicated that Ca2+ dysregulation is involved in AD pathology. It is reported that decreased capacitative Ca2+ entry (CCE), a refilling mechanism of intracellular Ca2+, resulting in increased Aβ production. In contrast, constitutive activation of CCE could decrease Aβ production. Panax ginseng Meyer is known to enhance memory and cognitive functions in healthy human subjects. We have previously reported that some ginsenosides decrease Aβ levels in cultured primary neurons and AD mouse model brains. However, mechanisms involved in the Aβ-lowering effect of ginsenosides remain unclear. In this study, we investigated the relationship between CCE and Aβ production by examining the effects of various ginsenosides on CCE levels. Aβ-lowering ginsenosides such as Rk1, Rg5, and Rg3 potentiated CCE. In contrast, ginsenosides without Aβ-lowering effects (Re and Rb2) failed to potentiate CCE. The potentiating effect of ginsenosides on CCE was inhibited by the presence of 2-aminoethoxydiphenyl borate (2APB), an inhibitor of CCE. 2APB alone increased Aβ42 production. Furthermore, the presence of 2APB prevented the effects of ginsenosides on Aβ42 production. Our results indicate that ginsenosides decrease Aβ production via potentiating CCE levels, confirming a close relationship between CCE levels and Aβ production. Since CCE levels are closely related to Aβ production, modulating CCE could be a novel target for AD therapeutics.

Rat Brain cDNA Library로부터 SNAP-25 유전자의 클로닝 (Cloning of SNAS-25 Gene from Rat Brain cDNA Library)

  • 조애리;지영미;유민;이순철;유관희
    • 대한의생명과학회지
    • /
    • 제6권1호
    • /
    • pp.11-17
    • /
    • 2000
  • SNAP-25는 presynaptic plasma membrane에 위치하는 단백질로서 synaptic vesicle의 docking과 fusion에 있어서 매우 중요한 역할을 한다. 생쥐 SNAP-25$^{2)}$ 유전자와 99%의 높은 homology를 갖고 있는 Z2 cDNA를 probe로 사용하여 쥐의 뇌 cDNA library에서 SNAP-25유전자를 screening하였다. 그 결과 6개 의 양성 클론을 분리 해 냈으며, 이들 각각을 S1, S2, S3, S4, S5, S6으로 명명하였다. 이 중에서 생쥐 SNAP-25와 가장 높은 homology를 보여 주고 있는 S5 클론을 선택하여 염기서열을 분석하였다. 2,100 bp의 염기서열로 구성된 쥐 SNAP-25 cDNA는 206개의 아미노산을 coding하는 618 bp의 open reading frame을 가지고 있으며, ORF는 209~211 bp에 위치하는 AUG codon에서 시작하여 827~829 bp에 위치하는 stop codon TAA에서 끝난다. 3' untranslated region에서 는 28과 19개 의 CA 반복 염기서열을 보여주고 있었으며, SNAP-25 peptide sequence에서 4개의 cystein residues는 84~91에 위치하고 있었으며, amino terminus 부분에서 amphipathic $\alpha$-helix를 형성하고 있는 것을 볼 수 있었다. 사람과 쥐의 SNAP-25 유전자는 88%, 생쥐와 쥐의 경우는 97%의 homology를 보여 주고 있었다. 그리고 사람과 쥐의 ORF에서 염기서열은 94%,생쥐와 쥐의 ORF에서 염기서열은 100%의 homology를 보여주고 있었으며 사람, 생쥐, 그리고 쥐의 ORF에서 아미노산 서열은 100%의 homology를 보여주고 있었다.

  • PDF

$MPP^+$로 유도된 SH-SY5Y신경세포 사멸에 대한 고분자성분제거 봉독약침액의 신경보호 효과 연구 (Neuroprotective Effects of Bee Venom, which Removes High Molecular Elements against $MPP^+$-induced Human Neuroblastoma SH-SY5Y Cell Death)

  • 배광록;두아름;김승남;박지연;박히준;이혜정;권기록
    • 대한한방내과학회지
    • /
    • 제31권2호
    • /
    • pp.254-263
    • /
    • 2010
  • Objectives : The neuroprotective effects of bee venom (BV) have been demonstrated in many studies, but bee venom has many side effects. So we used sweet bee venom (SBV), which has high molecular elements removed to reduce the side effects. I examined the neuroprotective effect of sweet bee venom in 1-methyl-4-phenylpyridine ($MPP^+$)-induced human neuroblastoma SH-SY5Y cells. Methods : To observe the possible toxicity of SBV itself, SH-SY5Y cells were treated with SBV in various concentrations for 3 h and $MPP^+$ in concentrations (1 and 5mM) for 24h. To investigate the protective effect of SBV against $MPP^+$ toxicity, SH-SY5Y cells were pretreated with vehicle or nontoxic concentrations of SBV for 3h and the cells were not washed, followed by incubation with respective concentrations of SBV and 1 mM $MPP^+$ for 24h. To investigate the protective effect of SBV against $MPP^+$ toxicity, SH-SY5Y cells were pretreated with vehicle or nontoxic concentrations of SBV for 3h and the cells were not washed, followed by incubation with respective of SBV(0.5%), 1 mM $MPP^+$, 5uM AKT inhibitor(LY984002) and 10uM ERK inhibitor(PD98059) for 24 h. The protective effect was measured by cell viability assay. To investigate the degree of apoptosis, caspase-3 enzyme activity was measured in control, $MPP^+$, SBV+$MPP^+$. Results : SBV (0.5%) pretreatment protected the SH-SY5Y cells against $MPP^+$-induced apoptotic cell death. The cell viability was higher in the SH-SY5Y cells that were pretreated with vehicle or nontoxic concentrations of SBV than those not pretreated. The caspase-3 activity was lower in the pretreated groups than these not pretreated. ERK and AKT enzymes have a role in the neuroprotective effects of the sweet bee venom. Conclusions : The results demonstrate that SBV has a protective effect on dopaminergic neurons against $MPP^+$ toxicity. This data suggest that SBV could be a potential therapeutic tool for neurodegenerative diseases such as Parkinson's disease(PD).

사람 신경 간세포에서 도파민 신경세포 분화유도에 대한 Nurr 1 유전자의 역할 규명 (Induction of Midbrain Dopaminergic Phenotype in Nurr 1-Over expressing Human Neural Stem Cells)

  • 김한집;이학섭;김현창;민철기;이명애;김승업;한진;염재범;김나리;박원선;김태호;김의용;한일용
    • KSBB Journal
    • /
    • 제20권5호
    • /
    • pp.363-370
    • /
    • 2005
  • 중추신경계의 신경간세포가 파킨슨병과 뇌졸중과 같은 퇴행성 뇌 질환의 치료뿐만이 아니라 신경세포 발생과정에서의 중요성 때문에 최근에 커다란 관심의 대상이 되고 있다. 중추신경계의 발생과정 동안에, 중뇌의 도파민 신경세포의 형성은 두 가지의 분자생물학적인 기작에 의해서 결정된다. 첫째로, FGF-8, sonic hedgehog 그리고 전사조절인자 인 Nurr1이 도파민 신경세포의 형질을 결정짓는다. 또 다른 기작으로는, 전사조절인자 인 $Lm{\times}lb$$Pt{\times}3$가 중요하게 관련되어있다. 특히 Nurr1이 결핍된 생쥐에서, 타이로신수산화효소 (Tyrosine bydroxylase, TH) 면역양성 세포들이 중뇌흑색질에서 발견되지 않으므로 Nurr1이 도파민 신경세포의 발생에 필수적임을 알 수 있다. 본 연구에서는 도파민 신경세포의 형질을 유도하는데 있어서 Nurr1이 매개하는 기작을 연구하기 위해서 레트로 바이러스를 이용하여 Nurr1을 도입한 무한증식 신경간세포를 사용하였다. Nurr1 유전자의 과발현 만으로는 신경간세포에서 도파민 신경세포의 형질을 유도하지는 못하지만, 레티노이드 (retinoid, RA)와 폴스콜린 (forskolin, FK)을 처리하여 TH와 방향성 L-아미노산 탈카르복시화효소 (aromatic L-amino acid decarboxylase, AADC) mRNA의 발현을 유도하였다. 또한, Nurr1 과발현 신경간세포를 사람 별아교세포와 공동배양 하여 TH 발현량을 많이 증가시켰다. 이러한 공동배양실험에서, RA와 FK를 처리하면 TH의 발현수준이 더욱 더 증가함을 발견하였다. 이러한 결과들은 Nurr1 유전자를 도입한 사람 신경간세포가 파킨슨병 환자들에게 세포이식을 통한 유전자 치료의 유용성을 시사하고 있다.