• Title/Summary/Keyword: Human Model

Search Result 7,594, Processing Time 0.034 seconds

Development of Human Factor Risk Model for Use in Disaster System A Study on Safety Analysis (재난시스템에서 사용하기 위한 인적요인 위험 모델의 개발)

  • Park, Jong hun
    • Proceedings of the Korean Society of Disaster Information Conference
    • /
    • 2022.10a
    • /
    • pp.227-228
    • /
    • 2022
  • 전통적인 HRA(Human Reliability Analysis)방법은 특정 애플리케이션 또는 산업을 염두에 두고 있으며. 또한 이러한 방법은 종종 복잡하며, 시간이 많이 걸리고 적용하는 데 비용이 많이 들며 직접 비교하기에는 적합하지 않다. 제안된 HFHM(Human Factors Hazard Model: 인적 요인 위험 모델)은 기검증되고 시간 테스트를 거친 FTA(Fault Tree Analysis:결함 트리 분석)및 ETA(Event Tree Analysis:이벤트 트리 분석)의 확률 분석 도구 및 새로 개발된 HEP(Human Error Probability:인적 오류 확률)예측 도구와 통합되고, 인간과 관련된 PSF(Performance Shaping Factors:성능 형성 요인)를 중심으로 새로운 접근 방식으로 개발되었다. 인간-시스템은 상호작용으로 인한 재난사고 가능성을 모델링하는 위험분석 접근법 HFHM은 다음과 같은 상용 소프트웨어 도구 내에서 예시되고 자동화된다. HFHM에서 생성된 데이터는 SE 분석가 및 설계에 대한 표준화된 가이드로 사용될 수 있다. 본 연구에서는 인적 위험을 예측하는 이 새로운 접근 방식을 통해, 전체 시스템에 대한 포괄적인 재난안전 분석을 가능하게 한다.

  • PDF

Effective Model and Methods for Analysing Human Factors in Software Design for Efficient User Experience

  • Abduljalil, Sami;Kang, Dae-Ki
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.1
    • /
    • pp.100-104
    • /
    • 2011
  • In software system development, an application interface is the main communication platform between human developers and applications. Interaction in any software application requires human's mental and physical activities. Although software systems have increased drastically in diverse sectors and many forms to quench human's needs and satisfactions, human always concern about the ease in usability of the software application so that it can be easily understood and navigated. Since many software developers still focus on the quantity of contents instead of the quality of the interface from the user's point of view, it is important to address human factors need in the early stage of the design and to continue addressing them during the entire stages of the software design for the persistent support of usability. In this paper, we propose the Modified Prototype Model (MPM), which helps the software designers and developers to design user-friendly software systems with easy-to-navigate interfaces by uncovering human factors in a convenient way. Moreover, we propose methods that assist to identify more human factors regarding software design. In this paper, we also study the implications of the proposed model and the proposed methods.

A Study on the Detailed Classification and Empirical Analysis of Human Error (인적오류의 세부적 분류와 실증분석에 관한 연구)

  • Kim, Y.K.;Kim, C.Y.;Choi, Y.C.
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.10 no.1
    • /
    • pp.9-20
    • /
    • 2002
  • In aviation, it is important to analyse and classify human error in detail. Because human error has been implicated in 70 or 80% of aviation accidents in literature review. But, there is little detailed classification and research of human error. In this study, Objectives are to establish human error model by classifying types of human error in detail and also to analyse human factors by using the established model. Analysis of the data uses Korea Aviation Incidents Reporting System(GYRO). The resulting from actual analysis, there is a some difference between flight steps for human error occurrence and types of human error are different according to the aviation personnel(pilot, ATC controller).

  • PDF

Immunohistochemical analysis of effects of UVA exposure to the human fibroblasts in the skin equivalent model

  • Kazuhiro Shimizu;Fumihide Ogawa;Bae, Sang-Jae;Yoichiro Hamasaki;Ichiro Katayama
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.500-502
    • /
    • 2002
  • In vitro and in vivo studies have reported the induction of matrix metaloproteinase (MMP)-1 in the fibroblasts by ultraviolet (UV) A irradiation. We constructed the skin equivalent model using HaCaT cells as keratinocytes and human neonatal dennal fibroblasts as fibroblasts in the present study. The induction of MMP-l in the fibroblasts was confirmed immunohistochemically 6 hours after UVA irradiation using this model. This model was simply composed of human keratinocytes and fibroblasts. To our knowledge, there have been a few papers concerning the skin equivalent model in the field of photobiology. The effect of UVA exposure to fibroblasts through keratinocytes was examined using this model. The cross-talk can be examined between keratinocytes and fibroblasts. This model can be a useful tool in the field of photobiology.

  • PDF

Prediction of Pharmacokinetics and Penetration of Moxifloxacin in Human with Intra-Abdominal Infection Based on Extrapolated PBPK Model

  • Zhu, LiQin;Yang, JianWei;Zhang, Yuan;Wang, YongMing;Zhang, JianLei;Zhao, YuanYuan;Dong, WeiLin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.19 no.2
    • /
    • pp.99-104
    • /
    • 2015
  • The aim of this study is to develop a physiologically based pharmacokinetic (PBPK) model in intra-abdominal infected rats, and extrapolate it to human to predict moxifloxacin pharmacokinetics profiles in various tissues in intra-abdominal infected human. 12 male rats with intra- abdominal infections, induced by Escherichia coli, received a single dose of 40 mg/kg body weight of moxifloxacin. Blood plasma was collected at 5, 10, 20, 30, 60, 120, 240, 480, 1440 min after drug injection. A PBPK model was developed in rats and extrapolated to human using GastroPlus software. The predictions were assessed by comparing predictions and observations. In the plasma concentration versus time profile of moxifloxcinin rats, $C_{max}$ was $11.151{\mu}g/mL$ at 5 min after the intravenous injection and $t_{1/2}$ was 2.936 h. Plasma concentration and kinetics in human were predicted and compared with observed datas. Moxifloxacin penetrated and accumulated with high concentrations in redmarrow, lung, skin, heart, liver, kidney, spleen, muscle tissues in human with intra-abdominal infection. The predicted tissue to plasma concentration ratios in abdominal viscera were between 1.1 and 2.2. When rat plasma concentrations were known, extrapolation of a PBPK model was a method to predict drug pharmacokinetics and penetration in human. Moxifloxacin has a good penetration into liver, kidney, spleen, as well as other tissues in intra-abdominal infected human. Close monitoring are necessary when using moxifloxacin due to its high concentration distribution. This pathological model extrapolation may provide reference to the PK/PD study of antibacterial agents.

Identification and Organization of Task Complexity Factors Based on a Model Combining Task Design Aspects and Complexity Dimensions

  • Ham, Dong-Han
    • Journal of the Ergonomics Society of Korea
    • /
    • v.32 no.1
    • /
    • pp.59-68
    • /
    • 2013
  • Objective: The purpose of this paper is to introduce a task complexity model combining task design aspects and complexity dimensions and to explain an approach to identifying and organizing task complexity factors based on the model. Background: Task complexity is a critical concept in describing and predicting human performance in complex systems such as nuclear power plants(NPPs). In order to understand the nature of task complexity, task complexity factors need to be identified and organized in a systematic manner. Although several methods have been suggested for identifying and organizing task complexity factors, it is rare to find an analytical approach based on a theoretically sound model. Method: This study regarded a task as a system to be designed. Three levels of design ion, which are functional, behavioral, and structural level of a task, characterize the design aspects of a task. The behavioral aspect is further classified into five cognitive processing activity types(information collection, information analysis, decision and action selection, action implementation, and action feedback). The complexity dimensions describe a task complexity from different perspectives that are size, variety, and order/organization. Combining the design aspects and complexity dimensions of a task, we developed a model from which meaningful task complexity factors can be identified and organized in an analytic way. Results: A model consisting of two facets, each of which is respectively concerned with design aspects and complexity dimensions, were proposed. Additionally, twenty-one task complexity factors were identified and organized based on the model. Conclusion: The model and approach introduced in this paper can be effectively used for examining human performance and human-system interface design issues in NPPs. Application: The model and approach introduced in this paper could be used for several human factors problems, including task allocation and design of information aiding, in NPPs and extended to other types of complex systems such as air traffic control systems as well.

- The Accident Analyze of a Pointed-End Equipment for Human Error - (Human Error에 의한 첨단장비의 사고 분석 연구)

  • Yoon Yong Gu;Park Peom
    • Journal of the Korea Safety Management & Science
    • /
    • v.6 no.4
    • /
    • pp.39-46
    • /
    • 2004
  • The Study lay Emphasised on to Investigate Human Related Causes of a Pointed End Equipment Accident and the Basic data for Analyzing Human-Error Prevention Program. Peter Son's Model of Human-Error Accident Causation and Cooper's Model of Safety Culture Were Applied to Analyze the Severe Cause of a Pointed End Equipment for Last 5 Years. Through to Analyzing the Cause of Equipment Accident of Human-Error, Expert's Opinion and Experience Theory Method was Reflected. The Analyses Showed What the Immature and Inexperient Error Were Major Causes of a Pointed and Equipment Accident. The Cause of Human-Error was Found with Respect to Human, Tasks, Acknowledge, Organization.

The Accident Analyze study of a Pointed- End Equipment for Human Error (Human Error에 의한 첨단장비의 사고 분석연구)

  • Yoon Yong Gu;Park Peom
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2004.11a
    • /
    • pp.311-318
    • /
    • 2004
  • The Study lay Emphasised on to Investigate Human Related Causes of a Pointed End Equipment Accident and the Basic data for Analyzing Human-Error Prevention Program. Peter Son's Model of Human-Error Accident Causation and Cooper's Model of Safety Culture Were Applied to Analyze the Severe Cause of a Pointed End Equipment for Last 5 Years. Through to Analyzing the Cause of Equipment Accident of Human-Error, Expert's Opinion and Experience theory Method was Reflected. The Analyses Showed What the Immature and Inexperient Error Were Major Causes of a Pointed and Equipment Accident The Cause of Human-Error was Found with Respect to Human, Tasks, Acknowledge, Organization.

  • PDF

A System Dynamics Model for Assessment of Organizational and Human Factor in Nuclear Power Plant (시스템 다이내믹스를 활용한 원전 조직 및 인적인자 평가)

  • 안남성;곽상만;유재국
    • Korean System Dynamics Review
    • /
    • v.3 no.2
    • /
    • pp.49-68
    • /
    • 2002
  • The intent of this study is to develop system dynamics model for assessment of organizational and human factors in nuclear power plant which can contribute to secure the nuclear safety. Previous studies are classified into two major approaches. One is engineering approach such as ergonomics and probability safety assessment(PSA). The other is social science approach such like sociology, organization theory and psychology. Both have contributed to find organization and human factors and to present guideline to lessen human error in NPP. But, since these methodologies assume that relationship among factors is independent they don't explain the interactions among factors or variables in NPP. To overcome these limits, we have developed system dynamics model which can show cause and effect among factors and quantify organizational and human factors. The model we developed is composed of 16 functions of job process in nuclear power, and shows interactions among various factors which affects employees' productivity and job quality. Handling variables such like degree of leadership, adjustment of number of employee, and workload in each department, users can simulate various situations in nuclear power plant in the organization side. Through simulation, user can get insight to improve safety in plants and to find managerial tools in the organization and human side. Analyzing pattern of variables, users can get knowledge of their organization structure, and understand stands of other departments or employees. Ultimately they can build learning organization to secure optimal safety in nuclear power plant.

  • PDF