• Title/Summary/Keyword: Human Microbiome

Search Result 74, Processing Time 0.027 seconds

Oral and Human Microbiome Research

  • Chung, Sung-Kyun
    • Journal of dental hygiene science
    • /
    • v.19 no.2
    • /
    • pp.77-85
    • /
    • 2019
  • In the past gut microbiome has been the main focus of microbiome research. Studies about the microbiome inside oral cavities and other organs are underway. Studies about the relationship between noninfectious diseases and periodontal diseases, and the negative effects of harmful oral microbes on systemic health have been published in the recent past. A lot of attention is being paid towards fostering a healthy oral microbial ecosystem. This study aimed to understand the roles and effects of the microbiome inside the human body can potentially help cure various diseases including inflammatory bowel diseases with no known cure such as Crohn's disease, atopic dermatitis, obesity, cancer, diabetes, brain diseases and oral diseases. The present study examined technological trends in the correlation between the human microbiome and diseases in the human body, interactions between the human body's immunity, the metabolic system, and the microbiome, and research trends in other countries. While it has been proven that human microbiome is closely correlated with human diseases, most studies are still in the early stage of trying to compare the composition of microbiomes between health and patient groups. Since the oral environment is a dynamic environment that changes due to not only food intake but also other external factors such as lifestyle, hygiene, and drug intake, it is necessary to continue in-depth research on the microbiome composition characteristics to understand the complex functions of oral microorganisms. Analyzing the oral microbiome using computational technology may aid in disease diagnosis and prevention.

Microbial Forensics: Human Identification

  • Eom, Yong-Bin
    • Biomedical Science Letters
    • /
    • v.24 no.4
    • /
    • pp.292-304
    • /
    • 2018
  • Microbes is becoming increasingly forensic possibility as a consequence of advances in massive parallel sequencing (MPS) and bioinformatics. Human DNA typing is the best identifier, but it is not always possible to extract a full DNA profile namely its degradation and low copy number, and it may have limitations for identical twins. To overcome these unsatisfactory limitations, forensic potential for bacteria found in evidence could be used to differentiate individuals. Prokaryotic cells have a cell wall that better protects the bacterial nucleoid compared to the cell membrane of eukaryotic cells. Humans have an extremely diverse microbiome that may prove useful in determining human identity and may even be possible to link the microbes to the person responsible for them. Microbial composition within the human microbiome varies across individuals. Therefore, MPS of human microbiome could be used to identify biological samples from the different individuals, specifically for twins and other cases where standard DNA typing doses not provide satisfactory results due to degradation of human DNA. Microbial forensics is a new discipline combining forensic science and microbiology, which can not to replace current STR analysis methods used for human identification but to be complementary. Among the fields of microbial forensics, this paper will briefly describe information on the current status of microbiome research such as metagenomic code, salivary microbiome, pubic hair microbiome, microbes as indicators of body fluids, soils microbes as forensic indicator, and review microbial forensics as the feasibility of microbiome-based human identification.

Probing the diversity of healthy oral microbiome with bioinformatics approaches

  • Moon, Ji-Hoi;Lee, Jae-Hyung
    • BMB Reports
    • /
    • v.49 no.12
    • /
    • pp.662-670
    • /
    • 2016
  • The human oral cavity contains a highly personalized microbiome essential to maintaining health, but capable of causing oral and systemic diseases. Thus, an in-depth definition of "healthy oral microbiome" is critical to understanding variations in disease states from preclinical conditions, and disease onset through progressive states of disease. With rapid advances in DNA sequencing and analytical technologies, population-based studies have documented the range and diversity of both taxonomic compositions and functional potentials observed in the oral microbiome in healthy individuals. Besides factors specific to the host, such as age and race/ethnicity, environmental factors also appear to contribute to the variability of the healthy oral microbiome. Here, we review bioinformatic techniques for metagenomic datasets, including their strengths and limitations. In addition, we summarize the interpersonal and intrapersonal diversity of the oral microbiome, taking into consideration the recent large-scale and longitudinal studies, including the Human Microbiome Project.

Analysis of Research Trend in Human Microbiome (Human Microbiome 연구개발 동향분석)

  • Park, Jung-Min;Lee, Ji-Hye;Hong, Seok-In
    • Food Science and Industry
    • /
    • v.47 no.2
    • /
    • pp.80-91
    • /
    • 2014
  • 식품분야는 기술의 발전속도가 비교적 빠르지 않으나 적용범위가 광범위하므로 정량적인 분석 방법을 도입하여 연구트렌드를 분석함으로써 연구테마 및 아이템을 발굴하는데 시사점을 제공 할 수 있다. 미국 NIH에서는 인체 미생물체의 메타지노믹스 연구를 시작하는 등 선진국을 중심으로 제2의 휴먼지놈프로젝트라고 불리는 장내미생물 균총에 대한 연구결과가 속속 제시되고 있다. 이런 측면에서 human microbiome 연구동향을 분석하여 식품 관련연구에 활용하기 위해 특허와 논문의 서지정보를 활용하여 정량적인 분석을 시도하였다. 분석대상은 1992년 이후로 2011년 말까지 전세계에 출원된 human microbiome 관련 특허와 논문을 대상으로 하였고, 분석프로그램은 Thomson Reuters에서 제공하는 Thomson Innovation을 사용하였다.

Current Status and Future Promise of the Human Microbiome

  • Kim, Bong-Soo;Jeon, Yoon-Seong;Chun, Jongsik
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.16 no.2
    • /
    • pp.71-79
    • /
    • 2013
  • The human-associated microbiota is diverse, varies between individuals and body sites, and is important in human health. Microbes in human body play an essential role in immunity, health, and disease. The human microbiome has been studies using the advances of next-generation sequencing and its metagenomic applications. This has allowed investigation of the microbial composition in the human body, and identification of the functional genes expressed by this microbial community. The gut microbes have been found to be the most diverse and constitute the densest cell number in the human microbiota; thus, it has been studied more than other sites. Early results have indicated that the imbalances in gut microbiota are related to numerous disorders, such as inflammatory bowel disease, colorectal cancer, diabetes, and atopy. Clinical therapy involving modulating of the microbiota, such as fecal transplantation, has been applied, and its effects investigated in some diseases. Human microbiome studies form part of human genome projects, and understanding gleaned from studies increase the possibility of various applications including personalized medicine.

Toward The Fecal Microbiome Project (분변 미생물군집 프로젝트)

  • Unno, Tatsuya
    • Korean Journal of Microbiology
    • /
    • v.49 no.4
    • /
    • pp.415-418
    • /
    • 2013
  • Since the development of the next generation sequencing (NGS) technology, 16S rRNA gene sequencing has become a major tool for microbial community analysis. Recently, human microbiome project (HMP) has been completed to identify microbes associated with human health and diseases. HMP achieved characterization of several diseases caused by bacteria, especially the ones in human gut. While human intestinal bacteria have been well characterized, little have been studied about other animal intestinal bacteria. In this study, we surveyed diversity of livestock animal fecal microbiota and discuss importance of studying fecal microbiota. Here, we report the initiation of the fecal microbiome project in South Korea.

Scarring the early-life microbiome: its potential life-long effects on human health and diseases

  • Hyunji Park;Na-Young Park;Ara Koh
    • BMB Reports
    • /
    • v.56 no.9
    • /
    • pp.469-481
    • /
    • 2023
  • The gut microbiome is widely recognized as a dynamic organ with a profound influence on human physiology and pathology. Extensive epidemiological and longitudinal cohort studies have provided compelling evidence that disruptions in the early-life microbiome can have long-lasting health implications. Various factors before, during, and after birth contribute to shaping the composition and function of the neonatal and infant microbiome. While these alterations can be partially restored over time, metabolic phenotypes may persist, necessitating research to identify the critical period for early intervention to achieve phenotypic recovery beyond microbiome composition. In this review, we provide current understanding of changes in the gut microbiota throughout life and the various factors affecting these changes. Specifically, we highlight the profound impact of early-life gut microbiota disruption on the development of diseases later in life and discuss perspectives on efforts to recover from such disruptions.

The interaction between gut microbiome and nutrients on development of human disease through epigenetic mechanisms

  • Lee, Ho-Sun
    • Genomics & Informatics
    • /
    • v.17 no.3
    • /
    • pp.24.1-24.8
    • /
    • 2019
  • Early environmental exposure is recognized as a key factor for long-term health based on the Developmental Origins of Health and Disease hypothesis. It considers that early-life nutrition is now being recognized as a major contributor that may permanently program change of organ structure and function toward the development of diseases, in which epigenetic mechanisms are involved. Recent researches indicate early-life environmental factors modulate the microbiome development and the microbiome might be mediate diet-epigenetic interaction. This review aims to define which nutrients involve microbiome development during the critical window of susceptibility to disease, and how microbiome modulation regulates epigenetic changes and influences human health and future prevention strategies.

Advances in Culturomics Research on the Human Gut Microbiome: Optimizing Medium Composition and Culture Techniques for Enhanced Microbial Discovery

  • Hye Seon Song;Yeon Bee Kim;Joon Yong Kim;Seong Woon Roh;Tae Woong Whon
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.4
    • /
    • pp.757-764
    • /
    • 2024
  • Despite considerable advancements achieved using next-generation sequencing technologies in exploring microbial diversity, several species of the gut microbiome remain unknown. In this transformative era, culturomics has risen to prominence as a pivotal approach in unveiling realms of microbial diversity that were previously deemed inaccessible. Utilizing innovative strategies to optimize growth and culture medium composition, scientists have successfully cultured hard-tocultivate microbes. This progress has fostered the discovery and understanding of elusive microbial entities, highlighting their essential role in human health and disease paradigms. In this review, we emphasize the importance of culturomics research on the gut microbiome and provide new theories and insights for expanding microbial diversity via the optimization of cultivation conditions.

Analysis techniques for fermented foods microbiome (발효식품의 마이크로바이옴 분석 기술)

  • Cha, In-Tae;Seo, Myung-ji
    • Food Science and Industry
    • /
    • v.50 no.1
    • /
    • pp.2-10
    • /
    • 2017
  • Human have eaten various traditional fermented foods for a numbers of million years for health benefit as well as survival. The beneficial effects of fermented foods have been resulted from complex microbial communications within the fermented foods. Therefore, the holistic approaches for individual identification and complete microbial profiling involved in their communications have been of interest to food microbiology fields. Microbiome is the ecological community of microorganisms that literally share our environments including foods as well as human body. However, due to the limitation of culture-dependent methods such as simple isolations of just culturable microorganisms, the culture-independent methods have been consistently developed, resulting in new light on the diverse non-culturable and hitherto unknown microorganisms, and even microbial communities in the fermented foods. For the culture-independent approaches, the food microbiome has been deciphered by employing various molecular analysis tools such as fluorescence in situ hybridization, quantitative PCR, and denaturing gradient gel-electrophoresis. More recently, next-generation-sequencing (NGS) platform-based microbiome analysis has been of interest, because NGS is a powerful analytical tool capable of resolving the microbiome in respect to community structures, dynamics, and activities. In this overview, the development status of analysis tools for the fermented food microbiome is covered and research trend for NGS-based food microbiome analysis is also discussed.