• Title/Summary/Keyword: Human Instance Segmentation

Search Result 11, Processing Time 0.014 seconds

The Application Methods of FarmMap Reading in Agricultural Land Using Deep Learning (딥러닝을 이용한 농경지 팜맵 판독 적용 방안)

  • Wee Seong Seung;Jung Nam Su;Lee Won Suk;Shin Yong Tae
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.2
    • /
    • pp.77-82
    • /
    • 2023
  • The Ministry of Agriculture, Food and Rural Affairs established the FarmMap, an digital map of agricultural land. In this study, using deep learning, we suggest the application of farm map reading to farmland such as paddy fields, fields, ginseng, fruit trees, facilities, and uncultivated land. The farm map is used as spatial information for planting status and drone operation by digitizing agricultural land in the real world using aerial and satellite images. A reading manual has been prepared and updated every year by demarcating the boundaries of agricultural land and reading the attributes. Human reading of agricultural land differs depending on reading ability and experience, and reading errors are difficult to verify in reality because of budget limitations. The farmmap has location information and class information of the corresponding object in the image of 5 types of farmland properties, so the suitable AI technique was tested with ResNet50, an instance segmentation model. The results of attribute reading of agricultural land using deep learning and attribute reading by humans were compared. If technology is developed by focusing on attribute reading that shows different results in the future, it is expected that it will play a big role in reducing attribute errors and improving the accuracy of digital map of agricultural land.