• 제목/요약/키워드: Human Impedance

검색결과 201건 처리시간 0.025초

연료전지 자동차 세계기술규정의 감전보호기준 연구 (Research on Standards for Protection against Electric Shock in Global Technical Regulations of Fuel Cell Vehicle)

  • 황보천;이규명;유경준
    • 한국수소및신에너지학회논문집
    • /
    • 제21권3호
    • /
    • pp.167-183
    • /
    • 2010
  • This paper analyzes the backgrounds of the standards for protection against electric shock in Global Technical Regulations (GTR) of Fuel Cell Vehicle (FCV). Targets on research were high voltage criteria, safety current, isolation and grounding resistance, time limitation, energy, adequate clearance, and test procedure. Based on human impedance and effect of current in IEC 60479-1, safety of human was examined. Then, isolation and grounding circuit model of FCV were analyzed theoretically. The results give several suggestions: touch voltage less than 25V, AC energy less than 0.0813J, separation considering middle finger length, grounding resistance less than $0.2\Omega$, maximum AC ground voltage of 1V (rms), and isolation resistance between earth and electrical chassis. In MATLAB/Simulink environment, error characteristics of isolation resistance measurement procedure using internal DC sources were analyzed under variations of internal resistance of voltmeter and isolation resistance.

잉크젯 프린팅 기술을 이용한 캐패스티브 터치 페이퍼 (Inkjet-Printed Capacitive Touch Paper)

  • 윤태화;이삭;임성준
    • 한국통신학회논문지
    • /
    • 제40권5호
    • /
    • pp.799-805
    • /
    • 2015
  • 이 논문에서는 잉크젯 프린팅 기술을 이용한 캐패시티브 터치 패드가 제안되었다. 이 터치 패드는 피부의 전기적 임피던스를 인한 유효 캐패시턴스의 변화를 탐지함으로써 터치됨을 감지한다. 종이를 기판으로 이용함으로써 값 싸고, 유연하며, 쉽게 쓰고 버릴 수 있는 터치 패드가 구현되었다. 또한 잉크젯 프린팅 기술을 이용함으로써 쉽고, 빠르고, 친환경적으로 제작이 되었다. 터치 하지 않았을 때, 측정된 캐패시턴스는 163~182pF 범위의 값을 가지며, 터치 하였을 때 218~272pF의 값을 가진다. 각 상태의 캐패스턴스 차이는 손가락의 터치를 인식할 수 있을 만큼 충분히 큼을 확인하였다.

Internet-based Real-time Obstacle Avoidance of a Mobile Robot

  • Ko Jae-Pyung;Lee Jang-Myung
    • Journal of Mechanical Science and Technology
    • /
    • 제19권6호
    • /
    • pp.1290-1303
    • /
    • 2005
  • In this research, a remote control system has been developed and implemented, which combines autonomous obstacle avoidance in real-time with force-reflective tele-operation. A tele-operated mobile robot is controlled by a local two-degrees-of-freedom force-reflective joystick that a human operator holds while he is monitoring the screen. In the system, the force-reflective joystick transforms the relation between a mobile robot and the environment to the operator as a virtual force which is generated in the form of a new collision vector and reflected to the operator. This reflected force makes the tele-operation of a mobile robot safe from collision in an uncertain and obstacle-cluttered remote environment. A mobile robot controlled by a local operator usually takes pictures of remote environments and sends the images back to the operator over the Internet. Because of limitations of communication bandwidth and the narrow view-angles of the camera, the operator cannot observe shadow regions and curved spaces frequently. To overcome this problem, a new form of virtual force is generated along the collision vector according to both distance and approaching velocity between an obstacle and the mobile robot, which is obtained from ultrasonic sensors. This virtual force is transferred back to the two-degrees-of-freedom master joystick over the Internet to enable a human operator to feel the geometrical relation between the mobile robot and the obstacle. It is demonstrated by experiments that this haptic reflection improves the performance of a tele-operated mobile robot significantly.

Use of Pine (Pinus densiflora) Pollen Cones as an Environmentally Friendly Sound-Absorbing Material

  • JANG, Eun-Suk
    • Journal of the Korean Wood Science and Technology
    • /
    • 제50권3호
    • /
    • pp.186-192
    • /
    • 2022
  • This study examined the utility of pine (Pinus densiflora) pollen cones as an environmentally friendly material with sound-absorbing properties. Pine pollen cone samples with widths of 0.8-1.2 cm and lengths of 3.5-4.5 cm were prepared. After filling impedance tubes to heights of 6, 8, 10, or 12 cm with the pine pollen cones, the sound absorption coefficient of the pine pollen cones was investigated. The peak sound absorption frequency of the samples with a thickness of 6 cm was reached at 1,512 Hz; however, this value shifted to 740 Hz in samples with a thickness of 12 cm. Therefore, the sound-absorbing performance of pine pollen cones at low frequencies improved as the material thickness increased. According to KS F 3503 (Korean Standards Association), the sound absorption grade of pine pollen cones ranges from 0.3 to 0.5 M, depending on the material thickness of the pine pollen cones. In conclusion, the pine pollen cones demonstrated good sound absorption properties. They, thus, may be considered an environmentally friendly sound-absorbing material.

IEC60479 인체 임피던스 모델 분석을 통한 직류환경에서의 누설전류검출 (DC Residual Current Detection Algorithm based on Analysis of IEC60479 Impedance Model for Human Body)

  • 이진성;김효성;왕용필
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2016년도 전력전자학술대회 논문집
    • /
    • pp.353-354
    • /
    • 2016
  • 본 논문은 IEC 60479 표준 "인체감전의 생리학적 현상"에 제시되어 있는 인체감전 현상에 대하여 교류환경과 직류환경에서 인체임피던스의 특성을 실험을 통하여 분석한다. 연구 결과, 적어도 상용주파수 이하에서는 IEC 60479 표준에서 제시하는 인체 임피던스 모델의 수정이 필요함을 발견하였다. 또한 도출된 실험 결과를 활용하여 직류 배전시스템의 TN 접지방식에서 인체 감전 및 설비 누전에 따른 사고에 대하여 구분동작이 가능한 직류전용 누설전류 검출(DC Residual Current Detection) 기법을 제안한다.

  • PDF

Design of Implantable CPW Fed Monopole Antenna for ISM Band Applications

  • Kumar, S. Ashok;Shanmuganantham, T.
    • Transactions on Electrical and Electronic Materials
    • /
    • 제15권2호
    • /
    • pp.55-59
    • /
    • 2014
  • An implantable CPW fed monopole antenna embedded into human tissue is proposed for ISM band biomedical applications. The proposed antenna is made compatible for implantation by embedding it in an alumina ceramic substrate (${\Box}_r=9.8$ and thickness=0.65 mm). The proposed antenna covers the ISM band of 2.45 GHz. The radiation parameters, such as return loss, E-Plane, H-Plane, are measured and analyzed, using the method of moments. The proposed antenna has substantial merits over other implanted antennas, like low profile, miniaturization, lower return loss, and better impedance matching and high gain.

휴대전화 전자파 노출에 의한 생리학적 영향 측정 (Measurement of the effects of RF exposure on human physiology by cellular phones)

  • 남기창;정원혁;박중훈;김덕원
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.42-44
    • /
    • 2005
  • Many cellular phone volunteer studies have been conducted since such a social issue is raised that the long time usage of cellular phone may increase health risk. While there were various volunteer studies using GSM cellular phone on heart rate and blood pressure at abroad, very few studies using CDMA phone were conducted in domestic and abroad. In this study, the volunteer groups of 21 adults were exposed at 300 mW for half an hour, and the physiological parameters such as blood pressure, heart rate, respiration rate, and skin impedance were measured. All the parameters' results did not reveal any differences between exposure and non-exposure conditions in adults.

  • PDF

Design and Performances of Implantable CPW Fed Apollian Shaped Antenna at 2.45 GHz ISM Band for Biomedical Applications

  • Kumar, S. Ashok;Sankar, J. Navin;Dileepan, D.;Shanmuganantham, T.
    • Transactions on Electrical and Electronic Materials
    • /
    • 제16권5호
    • /
    • pp.250-253
    • /
    • 2015
  • A novel implantable CPW fed Apollian shaped antenna embedded into human tissue is proposed for ISM band biomedical applications. The proposed antenna is made compatible for implantation by embedding it in an alumina ceramic substrate(εr=9.8 and thickness= 0.65 mm). The proposed antenna covers the ISM band of 2.45 GHz. The radiation parameters such as return loss, xy-plane, xz-plane, and yz-plane etc., are measured and analyzed using the agilent vector network analyzer. The proposed antenna has substantial advantages, including low profile, miniaturization ability, lower return loss, better impedance matching, and high gain over conventional implanted antennas.

초음파 모터의 위상차 제어를 이용한 3자유도 힘반영 촉각장치 설계 (Design of A Force-Reflecting 3DOF Interface using Phase-Difference Control of Ultrasonic Motors)

  • 오금곤;조진섭;김동옥;김영동;김재민
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 1999년도 전력전자학술대회 논문집
    • /
    • pp.84-87
    • /
    • 1999
  • This paper proposes an interfaces control system to drive a ultrasonic motors(USMs). To touch surfaces and objects created within a virtua environment, the 3 DOF force-reflecting interfaces provides force feedback to users, so to feel touching real things. To effectively display the mechanical impedance of the human hand we need a device with specific characteristics, such as low inertia almost zero friction and very high stiffness. As an actuator for direct drive method, the USMs have many good advantages satisfied these conditions over conventional servo motors. To estimate capability of this interface, we did an experiment. The device works very well, as user are able to detect the edge of the wall and the stiffness of the button.

  • PDF

심장운동부하 모델링과 의료장비 개발 (Modeling for the Work of Heart and Development of the WOH Medical device)

  • 노형운;서상호
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2006년 제4회 한국유체공학학술대회 논문집
    • /
    • pp.501-504
    • /
    • 2006
  • The estimation of the work of heart can be treated as one of the most important parameters for determining the amount of circulating blood needed for harmonious metabolism in the human body. By monitoring the work of heart, one can detect increased work load of heart and start the treatment at the early stage of CHF. Thus it is necessary to estimate the work of heart. The contractility of the left ventricle, the second important parameter for representing the motion of heart, can be estimated through information on the work of heart. In this study, the modified Windkessel model, which has been used for a measure of vascular hemodynamic impedance parameters, was adapted to estimate the work of heart.

  • PDF