• 제목/요약/키워드: Human Genome

검색결과 896건 처리시간 0.039초

인간-침팬지간 대량의 지놈서열 비교분석 (Comparative Analysis of Large Genome in Human-Chimpanzee)

  • Kim, Tae-Hyung;Kim, Dae-Soo;Jeon, Yeo-Jin;Cho, Hwan-Gue;Kim, Heui-Soo
    • 한국생물정보학회:학술대회논문집
    • /
    • 한국생물정보시스템생물학회 2003년도 제2차 연례학술대회 발표논문집
    • /
    • pp.183-192
    • /
    • 2003
  • With the availability of complete whole-genomes such as the human, mouse, fugu and chimpanzee chromosome 22, comparative analysis of large genomes from cross-species at varying evolutionary distances is considered one of a powerful approach for identifying coding and functional non-coding sequences. Here we describe a fast and efficient global alignment method especially for large genomic regions over mega bases pair. We used an approach for identifying all similarity regions by HSP (Highest Segment Pair) regions using local alignments and then large syntenic genome based on the both extension of anchors at HSP regions in two species and global conservation map. Using this alignment approach, we examined rearrangement loci in human chromosome 21 and chimpanzee chromosome 22. Finally, we extracted syntenic genome 30 Mb of human chromosome 21 with chimpanzee chromosome 22, and then identified genomic rearrangements (deletions and insertions ranging h size from 0.3 to 200 kb). Our experiment shows that all jnsertion/deletion (indel) events in excess of 300 bp within chimpanzee chromosome 22 and human chromosome 21 alignments in order to identify new insertions that had occurred over the last 7 million years of evolution. Finally we also discussed evolutionary features throughout comparative analyses of Ka/ks (non-synonymous / synonymous substitutions) rate in orthologous 119 genes of chromosome 21 and 53 genes of MHC-I class in human and chimpanzee genome.

  • PDF

HPC 환경을 위한 워크플로우 기반의 바이오 데이터 분석 시스템 (Workflow-based Bio Data Analysis System for HPC)

  • 안신영;김병섭;최현화;전승협;배승조;최완
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제2권2호
    • /
    • pp.97-106
    • /
    • 2013
  • 인간 게놈 프로젝트의 완성 이후 유전체 분석 비용은 매우 빠르게 감소하고 있다. 이에 따라 인간 유전체 분석 요구가 급증할 것으로 예상된다. 인간 유전체 분석과 같은 대규모 바이오 데이터 분석을 고속으로 수행하기 위해서는 비IT 전문가들이 다양한 특성의 바이오 응용들을 고성능컴퓨팅 시스템을 통해 효과적으로 실행할 수 있어야 한다. 이를 위해서는 여러 응용들이 조합되어 순서를 갖고 실행되어야 하는 바이오 응용들을 워크플로우 형태로 쉽게 정의할 수 있어야 하며, 이 워크플로우를 HPC 클러스터 시스템에서 최적 자원을 할당 받아 분산 병렬 수행시켜야 한다. 이를 통해 바이오 데이터 분석 성능과 응답시간의 개선을 기대할 수 있다. 본 논문에서는 HPC 환경에 익숙하지 않은 비IT 바이오 연구자들이 쉽게 바이오 데이터 분석을 할 수 있도록 바이오 워크플로우를 쉽게 정의하고 실행할 수 있는 바이오 특화된 워크플로우 기반 대규모 데이터 분석 시스템을 제안한다.

사람 코점막에서 분리된 메티실린 내성 Staphylococcus epidermidis Z0117SE0041의 유전체 염기서열 (Complete genome of methicillin resistant Staphylococcus epidermidis Z0117SE0041 isolated from human nasal mucosa)

  • ;오재영;한재익;송원근;박희명;채종찬
    • 미생물학회지
    • /
    • 제54권4호
    • /
    • pp.474-476
    • /
    • 2018
  • 메티실린 내성 Staphylococcus epidermidis Z0117SE0041을 반려견 주인의 코점막으로부터 분리하였다. 완전 해독된 Z0117SE0041 균주의 게놈은 약 2.5 Mb의 염색체와 47 kb, 36 kb, 11 kb 크기의 3개 플라스미드로 구성되어 있었다. Z0117SE0041 균주는 병을 유발하거나 항생제 내성을 전파할 수 있는 가능성이 있으므로 보다 깊이 있는 유전체 분석이 요구된다.

Chemical Genomics and Medicinal Systems Biology: Chemical Control of Genomic Networks in Human Systems Biology for Innovative Medicine

  • Kim, Tae-Kook
    • BMB Reports
    • /
    • 제37권1호
    • /
    • pp.53-58
    • /
    • 2004
  • With advances in determining the entire DNA sequence of the human genome, it is now critical to systematically identify the function of a number of genes in the human genome. These biological challenges, especially those in human diseases, should be addressed in human cells in which conventional (e.g. genetic) approaches have been extremely difficult to implement. To overcome this, several approaches have been initiated. This review will focus on the development of a novel 'chemical genetic/genomic approach' that uses small molecules to 'probe and identify' the function of genes in specific biological processes or pathways in human cells. Due to the close relationship of small molecules with drugs, these systematic and integrative studies will lead to the 'medicinal systems biology approach' which is critical to 'formulate and modulate' complex biological (disease) networks by small molecules (drugs) in human bio-systems.

A Comparison between Low- and High-Passage Strains of Human CytomegalovirusS

  • Wang, Wen-Dan;Lee, Gyu-Cheol;Kim, Yu Young;Lee, Chan Hee
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권10호
    • /
    • pp.1800-1807
    • /
    • 2016
  • To understand how human cytomegalovirus (HCMV) might change and evolve after reactivation, it is very important to understand how the nucleotide sequence of cultured HCMV changes after in vitro passaging in cell culture, and how these changes affect the genome of HCMV and the consequent variation in amino acid sequence. Strain JHC of HCMV was propagated in vitro for more than 40 passages and its biological and genetic changes were monitored. For each passage, real-time PCR was performed in order to determine the genome copy number, and a plaque assay was employed to get virus infection titers. The infectious virus titers gradually increased with passaging in cell culture, whereas the number of virus genome copies remained relatively unchanged. A linear correlation was observed between the passage number and the log10 infectious virus titer per virus genome copy number. To understand the genetic basis underlying the increase in HCMV infectivity with increasing passage, the whole-genome DNA sequence of the high-passage strain was determined and compared with the genome sequence of the low-passage strain. Out of 100 mutations found in the high-passage strain, only two were located in an open reading frame. A G-T substitution in the RL13 gene resulted in a nonsense mutation and caused an early stop. A G-A substitution in the UL122 gene generated an S-F nonsynonymous mutation. The mutations in the RL13 and UL122 genes might be related to the increase in virus infectivity, although the role of the mutations found in noncoding regions could not be excluded.

Bioinformatics in the Post-genome Era

  • Yu, Ung-Sik;Lee, Sung-Hoon;Kim, Young-Joo;Kim, Sang-Soo
    • BMB Reports
    • /
    • 제37권1호
    • /
    • pp.75-82
    • /
    • 2004
  • Recent years saw a dramatic increase in genomic and proteomic data in public archives. Now with the complete genome sequences of human and other species in hand, detailed analyses of the genome sequences will undoubtedly improve our understanding of biological systems and at the same time require sophisticated bioinformatic tools. Here we review what computational challenges are ahead and what are the new exciting developments in this exciting field.

Risk Prediction Using Genome-Wide Association Studies on Type 2 Diabetes

  • Choi, Sungkyoung;Bae, Sunghwan;Park, Taesung
    • Genomics & Informatics
    • /
    • 제14권4호
    • /
    • pp.138-148
    • /
    • 2016
  • The success of genome-wide association studies (GWASs) has enabled us to improve risk assessment and provide novel genetic variants for diagnosis, prevention, and treatment. However, most variants discovered by GWASs have been reported to have very small effect sizes on complex human diseases, which has been a big hurdle in building risk prediction models. Recently, many statistical approaches based on penalized regression have been developed to solve the "large p and small n" problem. In this report, we evaluated the performance of several statistical methods for predicting a binary trait: stepwise logistic regression (SLR), least absolute shrinkage and selection operator (LASSO), and Elastic-Net (EN). We first built a prediction model by combining variable selection and prediction methods for type 2 diabetes using Affymetrix Genome-Wide Human SNP Array 5.0 from the Korean Association Resource project. We assessed the risk prediction performance using area under the receiver operating characteristic curve (AUC) for the internal and external validation datasets. In the internal validation, SLR-LASSO and SLR-EN tended to yield more accurate predictions than other combinations. During the external validation, the SLR-SLR and SLR-EN combinations achieved the highest AUC of 0.726. We propose these combinations as a potentially powerful risk prediction model for type 2 diabetes.

Structural investigation on the intrinsically disordered N-terminal region of HPV16 E7 protein

  • Lee, Chewook;Kim, Do-Hyoung;Lee, Si-Hyung;Su, Jiulong;Han, Kyou-Hoon
    • BMB Reports
    • /
    • 제49권8호
    • /
    • pp.431-436
    • /
    • 2016
  • Human papillomavirus (HPV) is the major cause of cervical cancer, a deadly threat to millions of females. The early oncogene product (E7) of the high-risk HPV16 is the primary agent associated with HPV-related cervical cancers. In order to understand how E7 contributes to the transforming activity, we investigated the structural features of the flexible N-terminal region (46 residues) of E7 by carrying out N-15 heteronuclear NMR experiments and replica exchange molecular dynamics simulations. Several NMR parameters as well as simulation ensemble structures indicate that this intrinsically disordered region of E7 contains two transient (10-20% populated) helical pre-structured motifs that overlap with important target binding moieties such as an E2F-mimic motif and a pRb-binding LXCXE segment. Presence of such target-binding motifs in HPV16 E7 provides a reasonable explanation for its promiscuous target-binding behavior associated with its transforming activity.