• Title/Summary/Keyword: Human Computation

Search Result 211, Processing Time 0.029 seconds

An Integrated Approach to Measuring Supply Chain Performance

  • Theeranuphattana, Adisak;Tang, John C.S.;Khang, Do Ba
    • Industrial Engineering and Management Systems
    • /
    • v.11 no.1
    • /
    • pp.54-69
    • /
    • 2012
  • Chan and Qi (SCM 8/3 (2003) 209) developed an innovative measurement method that aggregates performance measures in a supply chain into an overall performance index. The method is useful and makes a significant contribution to supply chain management. Nevertheless, it can be cumbersome in computation due to its highly complex algorithmic fuzzy model. In aggregating the performance information, weights used by Chan and Qi-which aim to address the imprecision of human judgments-are incompatible with weights in additive models. Furthermore, the default assumption of linearity of its scoring procedure could lead to an inaccurate assessment of the overall performance. This paper addresses these limitations by developing an alternative measurement that takes care of the above. This research integrates three different approaches to multiple criteria decision analysis (MCDA)-the multiattribute value theory (MAVT), the swing weighting method and the eigenvector procedure-to develop a comprehensive assessment of supply chain performance. One case study is presented to demonstrate the measurement of the proposed method. The performance model used in the case study relies on the Supply Chain Operations Reference (SCOR) model level 1. With this measurement method, supply chain managers can easily benchmark the performance of the whole system, and then analyze the effectiveness and efficiency of the supply chain.

Facial-feature Detection in Color Images using Chrominance Components and Mean-Gray Morphology Operation (색도정보와 Mean-Gray 모폴로지 연산을 이용한 컬러영상에서의 얼굴특징점 검출)

  • 강영도;양창우;김장형
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.3
    • /
    • pp.714-720
    • /
    • 2004
  • In detecting human faces in color images, additional geometric computation is often necessary for validating the face-candidate regions having various forms. In this paper, we propose a method that detects the facial features using chrominance components of color which do not affected by face occlusion and orientation. The proposed algorithm uses the property that the Cb and Cr components have consistent differences around the facial features, especially eye-area. We designed the Mean-Gray Morphology operator to emphasize the feature areas in the eye-map image which generated by basic chrominance differences. Experimental results show that this method can detect the facial features under various face candidate regions effectively.

CYTRIP: A Multi-day Trip Planning System based on Crowdsourced POIs Recommendation (CYTRIP: 크라우드 소싱을 이용한 POI 추천 기반의 여행 플래닝 시스템)

  • Aprilia, Priska;Oh, Kyeong-Jin;Hong, Myung-Duk;Jo, Geun-Sik
    • Annual Conference of KIPS
    • /
    • 2015.10a
    • /
    • pp.1281-1284
    • /
    • 2015
  • Multi-day trip itinerary planning is complex and time consuming task, from selecting a list of worth visiting POIs to arranging them into an itinerary with various constraints and requirements. In this paper, we present CYTRIP, a multi-day trip itinerary planning system that engages human computation (i.e. crowd recommendation) to collaboratively recommend POIs by providing a shared workspace. CYTRIP takes input the collective intelligence of crowd (i.e. recommended POIs) to build a multi-day trip itinerary taking into account user's preferences, various time constraints and locations. Furthermore, we explain how we engage crowd in our system. The planning problem and domain are formulated as AI planning using PDDL3. The preliminary empirical experiments show that our domain formulation is applicable to both single-day and multi-day trip planning.

Multiple Path Based Vehicle Routing in Dynamic and Stochastic Transportation Networks

  • Park, Dong-joo
    • Proceedings of the KOR-KST Conference
    • /
    • 2000.02a
    • /
    • pp.25-47
    • /
    • 2000
  • In route guidance systems fastest-path routing has typically been adopted because of its simplicity. However, empirical studies on route choice behavior have shown that drivers use numerous criteria in choosing a route. The objective of this study is to develop computationally efficient algorithms for identifying a manageable subset of the nondominated (i.e. Pareto optimal) paths for real-time vehicle routing which reflect the drivers' preferences and route choice behaviors. We propose two pruning algorithms that reduce the search area based on a context-dependent linear utility function and thus reduce the computation time. The basic notion of the proposed approach is that ⅰ) enumerating all nondominated paths is computationally too expensive, ⅱ) obtaining a stable mathematical representation of the drivers' utility function is theoretically difficult and impractical, and ⅲ) obtaining optimal path given a nonlinear utility function is a NP-hard problem. Consequently, a heuristic two-stage strategy which identifies multiple routes and then select the near-optimal path may be effective and practical. As the first stage, we utilize the relaxation based pruning technique based on an entropy model to recognize and discard most of the nondominated paths that do not reflect the drivers' preference and/or the context-dependency of the preference. In addition, to make sure that paths identified are dissimilar in terms of links used, the number of shared links between routes is limited. We test the proposed algorithms in a large real-life traffic network and show that the algorithms reduce CPU time significantly compared with conventional multi-criteria shortest path algorithms while the attributes of the routes identified reflect drivers' preferences and generic route choice behaviors well.

  • PDF

Recent research towards integrated deterministic-probabilistic safety assessment in Korea

  • Heo, Gyunyoung;Baek, Sejin;Kwon, Dohun;Kim, Hyeonmin;Park, Jinkyun
    • Nuclear Engineering and Technology
    • /
    • v.53 no.11
    • /
    • pp.3465-3473
    • /
    • 2021
  • For a long time, research into integrated deterministic-probabilistic safety assessment has been continuously conducted to point out and overcome the limitations of classical ET (event tree)/FT (fault tree) based PSA (probabilistic safety assessment). The current paper also attempts to assert the reason why a technical transformation from classical PSA is necessary with a re-interpretation of the categories of risk. In this study, residual risk was classified into interpolating- and extrapolating-censored categories, which represent risks that are difficult to identify through an interpolation or extrapolation of representative scenarios due to potential nonlinearity between hardware and human behaviors intertwined in time and space. The authors hypothesize that such risk can be dealt with only if the classical ETs/FTs are freely relocated, entailing large-scale computation associated with physical models. The functional elements that are favorable to find residual risk were inferred from previous studies. The authors then introduce their under-development enabling techniques, namely DICE (Dynamic Integrated Consequence Evaluation) and DeBATE (Deep learning-Based Accident Trend Estimation). This work can be considered as a preliminary initiative to find the bridging points between deterministic and probabilistic assessments on the pillars of big data technology.

Efficient Resource Slicing Scheme for Optimizing Federated Learning Communications in Software-Defined IoT Networks

  • Tam, Prohim;Math, Sa;Kim, Seokhoon
    • Journal of Internet Computing and Services
    • /
    • v.22 no.5
    • /
    • pp.27-33
    • /
    • 2021
  • With the broad adoption of the Internet of Things (IoT) in a variety of scenarios and application services, management and orchestration entities require upgrading the traditional architecture and develop intelligent models with ultra-reliable methods. In a heterogeneous network environment, mission-critical IoT applications are significant to consider. With erroneous priorities and high failure rates, catastrophic losses in terms of human lives, great business assets, and privacy leakage will occur in emergent scenarios. In this paper, an efficient resource slicing scheme for optimizing federated learning in software-defined IoT (SDIoT) is proposed. The decentralized support vector regression (SVR) based controllers predict the IoT slices via packet inspection data during peak hour central congestion to achieve a time-sensitive condition. In off-peak hour intervals, a centralized deep neural networks (DNN) model is used within computation-intensive aspects on fine-grained slicing and remodified decentralized controller outputs. With known slice and prioritization, federated learning communications iteratively process through the adjusted resources by virtual network functions forwarding graph (VNFFG) descriptor set up in software-defined networking (SDN) and network functions virtualization (NFV) enabled architecture. To demonstrate the theoretical approach, Mininet emulator was conducted to evaluate between reference and proposed schemes by capturing the key Quality of Service (QoS) performance metrics.

Communication Failure Resilient Improvement of Distributed Neural Network Partitioning and Inference Accuracy (통신 실패에 강인한 분산 뉴럴 네트워크 분할 및 추론 정확도 개선 기법)

  • Jeong, Jonghun;Yang, Hoeseok
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.16 no.1
    • /
    • pp.9-15
    • /
    • 2021
  • Recently, it is increasingly necessary to run high-end neural network applications with huge computation overhead on top of resource-constrained embedded systems, such as wearable devices. While the huge computational overhead can be alleviated by distributed neural networks running on multiple separate devices, existing distributed neural network techniques suffer from a large traffic between the devices; thus are very vulnerable to communication failures. These drawbacks make the distributed neural network techniques inapplicable to wearable devices, which are connected with each other through unstable and low data rate communication medium like human body communication. Therefore, in this paper, we propose a distributed neural network partitioning technique that is resilient to communication failures. Furthermore, we show that the proposed technique also improves the inference accuracy even in case of no communication failure, thanks to the improved network partitioning. We verify through comparative experiments with a real-life neural network application that the proposed technique outperforms the existing state-of-the-art distributed neural network technique in terms of accuracy and resiliency to communication failures.

Social Relationship Value Computation based on the Influence of Human Attributes classified by Topics (토픽별 인간 속성의 영향력 기반 소셜 관계 지수 산정)

  • Kwon, Oh-Sang;Park, Gun-Woo;Lee, Sang-Hoon
    • Annual Conference of KIPS
    • /
    • 2010.04a
    • /
    • pp.884-887
    • /
    • 2010
  • 최근 검색엔진의 효율성을 향상시키고 검색결과에 있어서 사용자들의 요구사항을 충족시키기 위한 연구들이 활발히 수행되고 있으며, 많은 방법론들이 제시되고 있다. 이는 방대한 정보 속에서 사용자의 검색 의도에 맞는 정보를 효과적으로 제공하는 것을 그 목표로 한다. 특히 본 논문에서는 검색하고자 하는 토픽별 사용자의 인적 속성들이 미치는 영향력을 기반으로 사용자간 소셜 관계 지수(SRV : Social Relationship Value)를 산정하는 방법을 제안한다. 소셜 관계 지수란 인간의 내재적인 특성을 수치로 산정한 것으로, 웹 사용자들에게 있어서는 검색 성향의 유사정도와 직결된다. 따라서 검색하고자 하는 토픽별 개인 성향의 유사정도를 수치로 부여하고 유사성이 높은 사람들의 검색 정보를 이용하면 사용자에 보다 만족된 검색결과를 제공할 수 있다. 본 연구에서는 구글 디렉터리(Google directory)의 정제된 각 토픽별 하위 범주(category)에 대해 선택 결과가 같은 사람들을 대상으로 인적 속성을 분석하고, 그 영향력을 가중치로 적용해 산정된 소셜 관계 지수와 사용자들의 검색 패턴을 비교 하였다. 그 결과 특정인을 기준으로 소셜 관계 지수가 높은 사람들의 검색 패턴이 매우 유사함을 확인 하였다. 이를 통해 토픽별 개인 간 연결 강도가 강할수록, 즉 유사성이 높은 사용자간에는 검색 패턴 또한 유사함을 검증 할 수 있었다.

Enhancement of Semantic Interoper ability in Healthcare Systems Using IFCIoT Architecture

  • Sony P;Siva Shanmugam G;Sureshkumar Nagarajan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.4
    • /
    • pp.881-902
    • /
    • 2024
  • Fast decision support systems and accurate diagnosis have become significant in the rapidly growing healthcare sector. As the number of disparate medical IoT devices connected to the human body rises, fast and interrelated healthcare data retrieval gets harder and harder. One of the most important requirements for the Healthcare Internet of Things (HIoT) is semantic interoperability. The state-of-the-art HIoT systems have problems with bandwidth and latency. An extension of cloud computing called fog computing not only solves the latency problem but also provides other benefits including resource mobility and on-demand scalability. The recommended approach helps to lower latency and network bandwidth consumption in a system that provides semantic interoperability in healthcare organizations. To evaluate the system's language processing performance, we simulated it in three different contexts. 1. Polysemy resolution system 2. System for hyponymy-hypernymy resolution with polysemy 3. System for resolving polysemy, hypernymy, hyponymy, meronymy, and holonymy. In comparison to the other two systems, the third system has lower latency and network usage. The proposed framework can reduce the computation overhead of heterogeneous healthcare data. The simulation results show that fog computing can reduce delay, network usage, and energy consumption.

Development of supporting platform for the fine flow characteristics of reactor core

  • Hao Qian;Guangliang Chen;Lei Li;Lixuan Zhang;Xinli Yin;Hanqi Zhang;Shaomin Su
    • Nuclear Engineering and Technology
    • /
    • v.56 no.5
    • /
    • pp.1687-1697
    • /
    • 2024
  • This study presents the Supporting platform for reactor fine flow characteristics calculation and analysis (Cilian platform), a user-friendly tool that supports the analysis and optimization of pressurized water reactor (PWR) cores with mixing vanes using computational fluid dynamics (CFD) computing. The Cilian platform allows for easy creation and optimization of PWR's main CFD calculation schemes and autonomously manages CFD calculation and analysis of PWR cores, reducing the need for human and computational resources. The platform's key features enable efficient simulation, rapid solution design, automatic calculation of core scheme options, and streamlined data extraction and processing techniques. The Cilian platform's capability to call external CFD software reduces the development time and cost while improving the accuracy and reliability of the results. In conclusion, the Cilian platform exemplifies an innovative solution for efficient computational fluid dynamics analysis of pressurized water reactor (PWR) cores. It holds great promise for driving advancements in nuclear power technology, enhancing the safety, efficiency, and cost-effectiveness of nuclear reactors. The platform adopts a modular design methodology, enabling the swift and accurate computation and analysis of diverse flow regions within core components. This design approach facilitates the seamless integration of multiple computational modules across various reactor types, providing a high degree of flexibility and reusability.